Introdução à Inferência Estatística
1. População: conjunto de indivíduos, ou itens, com pelo menos uma
característica em c...
1.2. Estudo Experimental: experimento no qual um tratamento é
deliberadamente aplicado aos indivíduos (ou itens) a fim de
...
1
2 1
3 2

 n
N
População Amostra
2.2. Duas Amostras: amostras são retiradas de uma ou duas populações.
 quando dispomo...
b) Duas populações: sortear n1 elementos da primeira população e n2 da
segunda e aplicar o mesmo tratamento em ambas.
1 1
...
2.2.3. k amostras: quando se tem k ≥ 3 amostras para comparar.
a) k grupos independentes: classificar, ao acaso, n element...
c) k grupos independentes com duas classificações: classificação
de vários grupos quando se tem dois critérios (ou fatores...
3. Conceitos em Inferência
3.1. Parâmetro Populacional
Geralmente denotado por , é uma característica populacional
de int...
3.3. Amostra aleatória: representada pelas iniciais aa, é formada pela
observação de n variáveis aleatórias X1, X2, . . . ...
3.5. Estatística: é uma medida numérica, S(X), que descreve uma
característica da amostra e que não depende de parâmetros
...
{ T(X) }  { S(X) }, ou seja, todo estimador é uma função da
amostra e, portanto, é uma estatística, porém, nem toda estat...
ESQUEMATICAMENTE
3.7.1. Questões que surgem:
 Quantos estimadores existem para um parâmetro populacional?
 Quais as qual...
3.8. O Estimador Ótimo
A teoria da Otimalidade estuda as propriedades dos estimadores e
define critérios para a escolha do...
3.8.3. Consistência: além de ser não viesado e de variância mínima
deseja-se que o estimador ˆ seja consistente.
Um esti...
Exemplo: estimadores para a média populacional - .
1) Estimar a média das alturas dos alunos da turma B de Estatística 2....
4. Estimadores para a média 
A maioria das aplicações em estatística envolvem a estimação da
média populacional .
Quais ...
Estudo das propriedades dos estimadores: média amostral, média
harmônica, média geométrica e média ponderada
( X1/3 + 2*X2...
Tabela resumo dos estimadores para a Média Populacional.
Estimadores
X M. Harm. M. Geom. M. Pond.
Média do Estimador 4.8 4...
Métodos de Estimação:
A teoria estatística define diversos métodos de estimação, dentre os
quais destacamos:
4.1. Método d...
Para um parâmetro  qualquer, se
)()(  fXE k
k  )ˆ(ˆ 1
kMM f  
.
Se k = 1, 1)( f e o estimador dos momentos pa...
4.4. Estimador Bayesiano: o estimador Bayesiano é obtido a partir
de uma ponderação da função de verossimilhança por uma
d...
5.4. Determinação do tamanho da amostra na estimação da média
5.5. O estimador para a variância populacional 2
 .
5.5.1. ...
Considere, agora, que a produtora tenha um custo adicional de 25
centavos por cada pacote com peso acima de 1008g. Qual a ...
Exercícios de Revisão
6) Um produto pesa em média 10g com desvio-padrão de 3g. Este é
embalado em caixas de 150 unidades. ...
7) Uma máquina automática enche latas, baseada no peso bruto das
mesmas. O peso bruto tem distribuição normal com média 1....
8) Seja X uma única observação de uma va com distribuição Bernoulli().
Sejam 1
ˆ = X e 2
ˆ = 1/2, dois estimadores para...
9) Sejam X1, X2, . . . , Xn uma aa de tamanho n da distribuição uniforme no
intervalo (0, ).
Considere os estimadores Xc1...
Introd inferencia
Próximos SlideShares
Carregando em…5
×

Introd inferencia

232 visualizações

Publicada em

Inferência

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
232
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
1
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Introd inferencia

  1. 1. Introdução à Inferência Estatística 1. População: conjunto de indivíduos, ou itens, com pelo menos uma característica em comum.  Também será denotada por população objetivo, que é sobre a qual desejamos obter informações e/ou fazer inferências.  Pode, ainda, ser chamada de Universo. Será denotada por:  Nu,,u,u,uU 321 iu unidades elementares, i = 1, 2, . . . , N. N = no de elementos, ou tamanho, da população. Exemplos: a) Residentes da cidade de São Carlos; b) Lote de peças produzido numa linha de produção de uma indústria; c) Eleitores do município de São Paulo, aptos a votar na eleição; d) Indivíduos do sexo masculino que sofrem de diabetes; etc, etc, etc ... 1.1. Amostra: subconjunto, necessariamente finito, de uma população.  é selecionada de forma que todos os elementos da população tenham a mesma chance de serem escolhidos. 1.1.1. Planejamentos Amostrais: são esquemas para coletas de dados numa pesquisa amostral.  Existem vários tipos de planejamentos dos quais destacaremos:  Amostra Aleatória Simples – AAS  Amostra Aleatória Estratificada – AAE  Amostra Aleatória por Conglomerados – AAC
  2. 2. 1.2. Estudo Experimental: experimento no qual um tratamento é deliberadamente aplicado aos indivíduos (ou itens) a fim de observar a sua resposta. Exemplos: a) ensaios para se verificar a dureza de materiais; b) estudos caso-controle em epidemiologia; c) pesos de cobaias submetidas à diferentes dietas; “Requer um Planejamento Experimental.”  No estudo experimental é muito importante determinar o número de elementos necessários, ou seja, o tamanho da amostra;  É importante, também, planejar adequadamente a amostra de maneira a não interferir nos resultados. 2. Levantamentos de dados: a seguir, serão apresentadas algumas situações envolvendo levantamentos de dados. 2.1. Uma amostra: sortear ao acaso n elementos de uma população para participar da amostra. Exemplos: a) dentre os eleitores de um município, sortear uma amostra para participar de uma pesquisa de intenção de votos; b) produzir uma amostra de peças de espuma, segundo uma específica formulação, para serem colocadas num teste de resistência à tração.  Normalmente compara-se a amostra com um padrão já conhecido;  Espera-se que a população seja homogênea (pouca variabilidade).
  3. 3. 1 2 1 3 2   n N População Amostra 2.2. Duas Amostras: amostras são retiradas de uma ou duas populações.  quando dispomos de duas amostras, geralmente queremos realizar uma comparação entre as mesmas. 2.2.1. Amostras independentes: nenhum elemento da primeira amostra interfere nos da segunda. a) dois tratamentos: tomar n elementos de uma única população e dividí- los em dois grupos, de preferência de mesmo tamanho. (ou sortear, independentemente, duas amostras de uma mesma população) 1 1 2 2  3 n1  n1 + n2 = n  1 2 N  n2 População Amostras
  4. 4. b) Duas populações: sortear n1 elementos da primeira população e n2 da segunda e aplicar o mesmo tratamento em ambas. 1 1 2 2 3   n1 N1  n1 + n2 = n 1 1 2 2 3   n2 N2 Populações Amostras 2.2.2. Amostras pareadas ou emparelhadas (dependentes): uma amostra observada em dois instantes diferentes: (antes/depois), (tempo 1, tempo 2). 1 1 Fazer as diferenças: 2 t 2   di = yi2 – yi1 n n t1 t2 Amostras
  5. 5. 2.2.3. k amostras: quando se tem k ≥ 3 amostras para comparar. a) k grupos independentes: classificar, ao acaso, n elementos em k grupos tal que n = n1 + n2 + . . . + nk.  O ideal é que todos os grupos sejam de mesmo tamanho: n1 = n2 = . . . = nk A1 : 1, 2, . . . , n1  k grupos independentes A2 : 1, 2, . . . , n2  Ak : 1, 2, . . . , nk  A variável A é chamada de fator e os grupos A1, A2, . . . , Ak são os tratamentos ou níveis do fator A. b) Medidas Repetidas: o mesmo grupo, de tamanho n, é observado em k instantes diferentes. 1 1 1 1 2 2 2 . . . 2     n n n n t1 t2 t3 tk
  6. 6. c) k grupos independentes com duas classificações: classificação de vários grupos quando se tem dois critérios (ou fatores) para a divisão dos mesmos.  Considere, por exemplo, um fator com três níveis (A1, A2, A3) e um segundo fator com dois níveis (B1, B2), terem-se k = 23 = 6 grupos para serem comparados. A1 B1 A1 B1 B2 A1 B2 A2 B1 A2 B1  6 grupos B2 A2 B2 A3 B1 A3 B1 B2 A3 B2 RESUMO 1 amostra  1 população 2 amostras Independentes 2 tratamentos (1 pop) 1 tratamento (2 pop) Dependentes dados pareados k amostras ( k ≥ 3 ) Independentes 1 fator 2 fatores Dependentes medidas repetidas
  7. 7. 3. Conceitos em Inferência 3.1. Parâmetro Populacional Geralmente denotado por , é uma característica populacional de interesse que pode ser expressa através de uma quantidade numérica. É desconhecido e fixo. Exemplos:  no de desempregados,  salário médio de uma categoria ou população,  opinião a respeito de uma dada atitude,  casos de dengue,  tempo gasto com filhotes,  tamanho da população  tempo de vida  no de votos para um determinado candidato,  produção agrícola, etc... 3.2. Espaço Paramétrico Denotado por , é o conjunto dos possíveis valores de . Exemplos:   = {  | –∞ <  < ∞ };   = {  | 0 <  < ∞ };   = {  | 0 ≤  ≤ 1 };   = { (1, 2 ) | –∞ < 1 < ∞ e 0 < 2 < ∞ }.
  8. 8. 3.3. Amostra aleatória: representada pelas iniciais aa, é formada pela observação de n variáveis aleatórias X1, X2, . . . , Xn, independentes e identicamente distribuídas, iid. nXXX ,,, 21   )(xF 3.4. Variável aleatória: uma variável aleatória ou va, é uma característica desconhecida, que pode variar de um indivíduo para outro da população e que, ao ser observada ou mensurada, deve gerar uma única resposta. Tipos de variáveis: a) Variáveis qualitativas: variáveis cujos possíveis resultados são atributos ou qualidades. São NÃO NUMÉRICAS. Podem ser classificadas em:  ORDINAIS, quando obedecem a uma ordem natural ou  NOMINAIS, quando não seguem nenhuma ordem. b) Variáveis quantitativas: variáveis cujos possíveis resultados são valores NUMÉRICOS, resultantes de mensuração ou contagem. Podem ser classificadas em:  DISCRETAS, quando assumem valores num espaço finito ou infinito enumerável ou  CONTÍNUAS, quando assumem valores num conjunto não enuméral (conjunto dos números reais). iid
  9. 9. 3.5. Estatística: é uma medida numérica, S(X), que descreve uma característica da amostra e que não depende de parâmetros desconhecidos. A estatística é uma função da amostra: S(X) = f (X1, X2, . . . , Xn)  toda estatística S(X) é uma va Exemplos:  n X X n i i   1 – média amostral,    1 1 2 2      n XX s n i i – variância amostral,  X(1) = mínimo  1ª estatística de ordem,  X(n) = máximo  n-ésima estatística de ordem. PARÂMETROS E ESTATÍSTICAS Nome ESTATÍSTICA Amostra PARÂMETRO População Média X  Variância s2 2 Correlação rX,Y X,Y Proporção pˆ p    3.6. Estimador: é uma quantidade, obtida a partir de uma amostra, que “estima” o valor de um parâmetro populacional. Será denotado por T(X).
  10. 10. { T(X) }  { S(X) }, ou seja, todo estimador é uma função da amostra e, portanto, é uma estatística, porém, nem toda estatística é um estimador.  todo estimador T(X) é uma va Notação: Como T(X) estima o parâmetro , uma notação simplificada para o estimador é dada por:  ˆ)(XT 3.6.1. Estimativa: estimativa é o valor de T(X) obtido de uma aa. 3.7. A Inferência Estatística: “A Inferência Estatística busca obter informações de parâmetros populacionais por intermédio das características de uma amostra e de suas distribuições de probabilidade”. Amostra aleatória  = parâmetro ˆ = estimador Intervalos de Confiança Testes de Hipótese
  11. 11. ESQUEMATICAMENTE 3.7.1. Questões que surgem:  Quantos estimadores existem para um parâmetro populacional?  Quais as qualidades que se deseja de um estimador?  Como escolher o melhor estimador? Resposta: Teoria da Otimalidade.
  12. 12. 3.8. O Estimador Ótimo A teoria da Otimalidade estuda as propriedades dos estimadores e define critérios para a escolha do estimador ótimo. Segundo essa teoria um estimador é ótimo basicamente se for: não viesado e de mínima variância. 3.8.1. Estimador não viesado (não viciado): o viés, do inglês bias, é definido pela diferença entre o valor esperado do estimador e o parâmetro o qual este está estimando. Seja ˆ , estimador de , então o viés de ˆ é definido por: B(ˆ ) = E(ˆ ) –  em que  é o espaço paramétrico. Se E(ˆ ) = , ˆ é dito não viesado (ou não viciado) e B(ˆ ) = 0 3.8.2. Precisão: uma propriedade importante para um estimador é que seja preciso, em outras palavras, que tenha baixa variabilidade  ˆ deve ser escolhido tal que sua variância seja a menor possível  )ˆ(|ˆ  Var seja mínima 
  13. 13. 3.8.3. Consistência: além de ser não viesado e de variância mínima deseja-se que o estimador ˆ seja consistente. Um estimador ˆ é dito ser consistente para  se   )ˆ(lim E n e 0)ˆ(lim   Var n Conforme aumenta o tamanho da amostra, mais ˆ se aproxima de . 3.8.4. O Erro Quadrático Médio (EQM): o erro quadrático médio de um estimador ˆ é definido por EQM(ˆ )= E[(ˆ – )2 ] Prova-se facilmente que EQM(ˆ ) = Var(ˆ ) + [B()]2 Logo, se o estimador ˆ é não viesado, então, seu EQM é mínimo e EQM(ˆ ) = Var(ˆ ) Assim, a teoria da otimalidade procura, dentre os estimadores não viesados, aquele de menor variância.
  14. 14. Exemplo: estimadores para a média populacional - . 1) Estimar a média das alturas dos alunos da turma B de Estatística 2. Quais os estimadores possíveis? Vamos propor 4 estimadores: a) a média amostral: n X X i A ˆ b) o ponto médio entre os valores máximo e o mínimo da amostra: 2 ˆ )1()( XX n B   c) a mediana da amostra: XC ~ ˆ  d) a 5ª observação: 5ˆ XD 
  15. 15. 4. Estimadores para a média  A maioria das aplicações em estatística envolvem a estimação da média populacional . Quais os possíveis estimadores e qual deles é o melhor (estimador ótimo).  Média aritmética ou média amostral ( X );  Média geométrica;  Média harmônica;  Média aparada;  Média ponderada;  Mediana amostral ( X ~ );  Extimadores do tipo Bˆ e Dˆ (ver exemplo). Qual desses estimadores é o melhor para estimar ? a) 1º - escolher os não viesados; b) 2º - dentre os não viesados, encontrar o de menor variância. A teoria estatística (otimalidade) resolve esse problema e mostra qual o estimador ótimo para . Segundo essa teoria, o estimador ótimo para  é a média amostral (aritmética) X .
  16. 16. Estudo das propriedades dos estimadores: média amostral, média harmônica, média geométrica e média ponderada ( X1/3 + 2*X2/3 ) para amostras de tamanho n = 2, com reposição. População 2 3 5 6 8 Parâmetros Populacionais Média  = 4.8 Variância 2 = 4.56 Tamanho N = 5  n 2  = 2.28 Amostras Estimadores X1 X2 X M. Harm. M. Geom. M. Pond. 2 2 2 2.000 2.000 2.000 2 3 2.5 2.400 2.449 2.667 2 5 3.5 2.857 3.162 4.000 2 6 4 3.000 3.464 4.667 2 8 5 3.200 4.000 6.000 3 2 2.5 2.400 2.449 2.333 3 3 3 3.000 3.000 3.000 3 5 4 3.750 3.873 4.333 3 6 4.5 4.000 4.243 5.000 3 8 5.5 4.364 4.899 6.333 5 2 3.5 2.857 3.162 3.000 5 3 4 3.750 3.873 3.667 5 5 5 5.000 5.000 5.000 5 6 5.5 5.455 5.477 5.667 5 8 6.5 6.154 6.325 7.000 6 2 4 3.000 3.464 3.333 6 3 4.5 4.000 4.243 4.000 6 5 5.5 5.455 5.477 5.333 6 6 6 6.000 6.000 6.000 6 8 7 6.857 6.928 7.333 8 2 5 3.200 4.000 4.000 8 3 5.5 4.364 4.899 4.667 8 5 6.5 6.154 6.325 6.000 8 6 7 6.857 6.928 6.667 8 8 8 8.000 8.000 8.000 Médias 4.8 4.323 4.546 4.80 Variâncias 2.28 2.5852 2.3772 2.5333
  17. 17. Tabela resumo dos estimadores para a Média Populacional. Estimadores X M. Harm. M. Geom. M. Pond. Média do Estimador 4.8 4.3229 4.5456 4.8 Vício 0 -0.4771 -0.2544 0 Vício ao quadrado 0 0.2277 0.0647 0 Variância do Estimador 2.28 2.5852 2.3772 2.5333 EQM 2.28 2.8129 2.4419 2.5333 Relação da variância de X com as demais 1 1.1339 1.0426 1.1111
  18. 18. Métodos de Estimação: A teoria estatística define diversos métodos de estimação, dentre os quais destacamos: 4.1. Método da máxima verossimilhança: o estimador é dado pelo valor que maximiza a distribuição conjunta da amostra, também chamada de função de verossimilhança.    n i ixfdadosL 1 )()|(  )]([maxˆ   LMV 4.2. Métodos dos momentos: o estimador é obtido igualando os momentos amostrais com os momentos populacionais.  Depende da distribuição de probabilidade da população  O momento de ordem k de uma va é definido como )( k k XE , k ≥ 1, se k = 1  )(1 XE  O momento amostral de ordem k de uma va é definido como n X m k i k  , se k = 1  Xm 1  Para estimar a média populacional , faz-se: 11ˆˆ m ou seja, Xˆ
  19. 19. Para um parâmetro  qualquer, se )()(  fXE k k  )ˆ(ˆ 1 kMM f   . Se k = 1, 1)( f e o estimador dos momentos para  é )(ˆ 1 XfMM   4.3. Método mínimos quadrados: o estimador é aquele que minimiza uma soma de quadrados de erros entre os valores da amostra e uma função do parâmetro )(g .  Se queremos estimar a média , então )()( XEg  . Nesse caso, o erro e para cada observação é calculado por )]([  iii gxe , i = 1, 2, . . . n, e    n i ii gxSQE 1 2 )]([)( . O estimador de mínimos quadrados é dado pelo valor de  que minimiza SQE(): )]([minˆ   SQEMQ  O estimador de mínimos quadrados é mais utilizado no ajuste de modelos de regressão linear.
  20. 20. 4.4. Estimador Bayesiano: o estimador Bayesiano é obtido a partir de uma ponderação da função de verossimilhança por uma distribuição de probabilidade para .  Seja uma distribuição de probabilidade (), denominada de distribuição a priori de , então (|dados)  ()L(|dados), (|dados) é a distribuição a posteriori de , dada a amostra.  Um estimador Bayesiano muito utilizado é dado pelo valor que maximiza a posteriori, ou seja, pela moda de (|dados): )]|([maxˆ dadosBay   5. O Estimador para a média . 5.1. Mostrar que a média amostral X atende às propriedades de estimador ótimo para . 5.2. A distribuição da média amostral X . 5.2.1. O Teorema do Limite Central (TLC). 5.3. O estimador para a proporção p. 5.3.1. A distribuição da proporção amostral pˆ .
  21. 21. 5.4. Determinação do tamanho da amostra na estimação da média 5.5. O estimador para a variância populacional 2  . 5.5.1. A distribuição da variância amostral 2 s . Exemplos: 1) Um elevador de capacidade 500kg serve um edifício. Se a distribuição do peso dos usuários for N(70, 100), determine: a) A probabilidade de que 7 passageiros ultrapassem esse limite. b) E 6 passageiros? 2) Um produto da marca XIS é comercializado em pacotes de 1kg, sendo que a distribuição do peso dos pacotes, em gramas, é N(1000, 51.2). A fiscalização inspeciona o produto por amostras de 5 pacotes e aplica uma multa se a média for menor do que 4g a menos do peso especificado. a) Qual a probabilidade de que o produto XIS seja multado? Os produtores de XIS pretendem diminuir essa probabilidade. Para isso o Estatístico da empresa deu duas sugestões: deslocar a média, aumentando o peso dos pacotes ou aplicar ações visando reduzir a variabilidade do processo de empacotamento. b) Para quanto deve ser regulada a nova média de tal forma que a probabilidade em (a) seja de no máximo 0.03? c) Caso se escolha a segunda opção, de quanto deve ser a nova variância para se obter o mesmo resultado?
  22. 22. Considere, agora, que a produtora tenha um custo adicional de 25 centavos por cada pacote com peso acima de 1008g. Qual a alteração no custo em cada um dos casos para um produção de 5 toneladas? 3) Para estimar o nível de dureza de peças de espuma injetada com boa precisão o técnico responsável decide selecionar uma amostra da produção para medição. Como os ensaios de medição são destrutivos, o número de peças para análise deve ser bem determinado para evitar gastos desnecessários. (dados históricos registram a variância do processo de produção como 2 = 2.96). Inicialmente fixou-se como precisão  = 0.5ud. a) Determinar o número de peças tal que a probabilidade de que a precisão seja alcançada seja de 0.99. b) A gerência achou esse número muito elevado e decidiu reduzir a precisão para 0.75ud. Que o número de peças deve ser inspecionado com esse novo valor? 4) Numa pesquisa eleitoral foi realizada uma pré-amostra de tamanho 40 obtendo-se 24.0ˆ p de eleitores que votam no candidato do partido PX. a) Qual deve ser o tamanho da amostra para que, com probabilidade 0.95, a estimativa pˆ não se distancie de p mais do que 0.02? b) Refazer o cálculo do tamanho da amostra pelo método conservativo. 5) Seja uma população com 20 e 567.22  . a) Numa amostra de tamanho n = 9, qual a probabilidade de que a variância amostral seja superior a 4.3? b) Determine um limite inferior k para o qual a probabilidade de que 2 s ser menor do que k seja de 0.025.
  23. 23. Exercícios de Revisão 6) Um produto pesa em média 10g com desvio-padrão de 3g. Este é embalado em caixas de 150 unidades. A caixa vazia pesa, em média, 200g com desvio-padrão de 9g. Admitindo que as variáveis em questão tenham distribuições normais e que as 150 unidades que são colocadas em uma caixa são tomadas ao acaso, determine a probabilidade de uma caixa cheia pesar mais de 1610g. Resolução: Sejam as va’s XP : peso do produto  N( 10 ; 9 ) XC : peso da caixa  N( 200 ; 81 ) XT : peso total da caixa cheia  ? Resultados: i) Se X1  N( 1 ; 1 2 ) e X2  N( 2 ; 2 2 ), independentes, então  X1 ± X2  N(1 ± 2 ; 1 2 + 2 2 ) ii) Se X1, X2, . . . , Xn  N(  ; 2 ), iid  X1 + X2 + . . . + Xn  N(n ; n2 ) De (i) e (ii), temos que XT = XP1 + XP2 + . . . + XP150 + XC e, XT  N( T ; 2 T ), em que: T = 15010 + 200 = 1700g 2 T = 1509 + 81 = 1431g2 ou seja, XT  N( 1700 ; 1431 ). 9913.0)38.2()1610(  ZPXP T .
  24. 24. 7) Uma máquina automática enche latas, baseada no peso bruto das mesmas. O peso bruto tem distribuição normal com média 1.000g e desvio padrão 20g. As latas têm pesos distribuídos normalmente com média 90g e desvio padrão 10g. Qual a probabilidade de que uma lata escolhida ao acaso tenha de peso líquido: a) menor do que 830g? b) maior do que 870 g? c) entre 860 e 930g? Resolução: Sejam as va’s XB : peso do produto  N( 1000 ; 400 ) XL : peso da caixa  N( 90 ; 100 ) XQ : peso total da caixa cheia  N( Q ; 2 Q ), De (i) temos que XQ = XB – XL e, Q = 1000 – 90 = 910g 2 Q = 400 + 100 = 500g2 ou seja, XQ  N( 910 ; 500 ). a) 0.0001718)58.3()830(  ZPXP Q b) 0.96330367.01)79.1()870(  ZPXP Q c) 0.01250.8133)89.024.2()930860(  ZPXP Q 0.80)930860(  QXP
  25. 25. 8) Seja X uma única observação de uma va com distribuição Bernoulli(). Sejam 1 ˆ = X e 2 ˆ = 1/2, dois estimadores para : a) verifique se os estimadores são não viesados para ; b) compare os EQM´s construa um gráfico como função de . X  Bernoulli(  ), 0 ≤  ≤ 1, tal que )(XE e )1()( XVar a)  )()ˆ( 1 XEE  1 ˆ não é viesado para  2 1 )2/1()ˆ( 2  EE  2 ˆ é viesado para , sendo 2 2 ]2/1[)ˆ( B b) 22 111 )]ˆ([)ˆ()ˆ(  BVarEQM 22 22 25.0)]ˆ([)2/1()ˆ(  BVarEQM Os EQM’s podem ser comparados obtendo-se os valores de  tal que )ˆ()ˆ( 21  EQMEQM , ou seja,: 22 25.0  Desta forma, se :         melhor1b éˆou a0 1     melhor éˆba 2         fazb tantoou a
  26. 26. 9) Sejam X1, X2, . . . , Xn uma aa de tamanho n da distribuição uniforme no intervalo (0, ). Considere os estimadores Xc11 ˆ  e         2 ˆ 1 22 nXX c . a) Ache c1 e c2 tais que 1 ˆ e 2 ˆ sejam não viesados para ; b) encontre os EQM´s dos dois estimadores X  U( 0,  ),     2 )(XE e 2 2 12 )(   XVar a) 2 )()ˆ( 111   cXcEE  para 21 c , 1 ˆ não é viesado para  22 )()( 2 )ˆ( 2 21 2 1 22                  c XEXE c XX cEE n  para 22 c , 2 ˆ não é viesado para  Logo, X2ˆ1  e         2 2ˆ 21 2 XX não são viesados para . b) 2 )]ˆ([)ˆ()ˆ(  BVarEQM 12 )/( 4)2()ˆ()ˆ( 2 11 n XVarVarEQM   n EQM 3 )ˆ( 2 1   12 2)()( 2 4)ˆ( 2 21 1 2          XVarXVar XX VarEQM n 6 )ˆ( 2 2  EQM

×