SlideShare una empresa de Scribd logo
1 de 29
Descargar para leer sin conexión
1
Idea intuitiva de límite
El límite de la función f(x) en el punto x0, es el valor al que se acercan las imágenes
(las y) cuando los originales (las x) se acercan al valor x0. Es decir el valor al que tienden
las imágenes cuando los originales tienden a x0.
Vamos a estudiar el límite de la función f(x) = x2
en el punto x0 = 2.
x f(x)
1,9 3,61
1,99 3,9601
1,999 3,996001
... ...
↓ ↓
2 4
x f(x)
2,1 4.41
2,01 4,0401
2,001 4,004001
... ...
↓ ↓
2 4
Tanto si nos acercamos a 2 por la izquierda (valores menores que 2) o la derecha
(valores mayores que 2) las imágenes se acercan a 4.
Se dice que el límite cuando x tiende a 2 de la función f(x) = x2
es 4
𝐒𝐞 𝐞𝐬𝐜𝐫𝐢𝐛𝐞 𝐥𝐢𝐦
𝒙→𝟐
𝒙 𝟐
= 𝟒
Límite de una función
2
Def. de límite de una función en un punto
Se dice que la función f(x) tiene como límite el número L, cuando x tiende a x0, si
fijado un número real positivo ε , mayor que cero, existe un numero positivo δ dependiente
de ε , tal que, para todos los valores de x distintos de x0 que cumplen la condición |x - x0| <
δ , se cumple que |f(x) - L| <ε .
También podemos definir el concepto de límite a través de entornos:
si y sólo si, para cualquier entorno de L que tomemos, por pequeño que
sea su radio, existe un entorno de x0 , Eδ(x0) , cuyos elementos (sin contar x0), tienen sus
imágenes dentro del entorno de L , Eε(L).
Límites laterales
Diremos que el límite de una función f(x) cuando x tiende hacia a por la izquierda es
L, si y sólo si para todo ε > 0 existe δ > 0 tal que si x ∈ (a+δ, a ) , entonces |f (x) - L| <ε .
Diremos que el límite de una función f(x) cuando x tiende hacia a por la derecha es L
, si y sólo si para todo ε > 0 existe δ > 0 tal que si x ∈ (a, a + δ), , entonces |f (x) - L| <ε .
3
El límite de una función en un punto si existe, es único. Para que exista el límite
de una función en un punto, tienen que existir los límites laterales en ese punto y
coincidir.
Ejemplo:
En este caso vemos que el límite tanto por la izquierda como por la derecha cuando x
tiende a 2 es 4.
El límite de la función es 4 aunque la función no tenga imagen en x = 2.
Para calcular el límite de una función en un punto, no nos interesa lo que sucede en
dicho punto sino a su alrededor.
4
Ejemplo
Dada la función:
Hallar .
Como no coinciden los límites laterales, la función no tiene límite en x = 0.
Limites infinitos
Límite más infinito
Una función f(x) tiene por límite +∞ cuando x → a, si para todo número real positivo
(K>0 )se verifica que f(x)>k para todos los valores próximos a a.
𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 = ∞ ∀𝑲 ∈ 𝑹+
∃𝜹 = 𝜹 𝑲 > 𝟎/ 𝟎< 𝒙 − 𝒂 < 𝜹 𝒇 𝒙 > 𝒌
Ejemplo:
5
Límite menos infinito
Una función f(x) tiene por límite -∞ cuando x a, si fijado un número real negativo K
< 0 se verifica que f(x) < k para todos los valores próximos a a.
𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 = −∞ ∀𝑲 ∈ 𝑹−
∃𝜹 = 𝜹 𝑲 > 𝟎/ 𝟎< 𝒙 − 𝒂 < 𝜹 𝒇 𝒙 < 𝒌
Ejemplo:
Límites en el infinito
Límite cuando x tiende a infinito
Límite cuando x tiende a menos infinito
6
Ejemplo:
Ejemplo:
Ejemplo:
Ejemplo:
7
Asíntotas
Asíntotas horizontales
Si se cumple que
Ejemplo
Calcular las asíntotas horizontales de la función:
Asíntotas verticales
Es una asíntota horizontal
8
Asíntotas verticales
Si se cumple que
Los valores de K hay que buscarlos entre los puntos que no pertenecen al dominio de
la función
Ejemplo
Calcular las asíntotas horizontales y verticales de la función:
Es una asíntota vertical
9
Asíntotas oblicuas
Tienen la forma
Sólo hallaremos las asíntotas oblicuas cuando no haya asíntotas horizontales.
Ejemplo
Calcular las asíntotas de la función:
Asíntotas horizontales
No hay asíntotas horizontales
Asíntotas verticales
Asíntotas oblicuas
10
Ramas parabólicas
Las ramas parabólicas se estudian sólo si:
Rama parabólica en la dirección del eje OY
Se dice que f tiene una rama parabólica en la dirección del eje OY cuando:
Esto quiere decir que la gráfica se comporta como una parábola de eje vertical.
Ejemplo
Estudiar las ramas parabólicas de la función:
Tiene una rama parabólica en la dirección del eje OY.
11
Rama parabólica en la dirección del eje OX
Se dice que f tiene una rama parabólica en la dirección del eje OX cuando:
Esto quiere decir que la gráfica se comporta como una parábola de eje horizontal.
Ejemplo
Estudiar las ramas parabólicas de la función:
Tiene una rama parabólica en la dirección del eje OX.
12
Propiedades de los límites
Límite de una constante
Límite de una suma
Límite de un producto
Límite de un cociente
Límite de una potencia
Límite de un logaritmo
Operaciones con infinito: Indeterminaciones
Infinito más un número
Infinito más infinito
Infinito menos infinito
13
Infinito por un número
Infinito por infinito
Infinito por cero
Cero partido por un número
Un número partido por cero
Un número partido por infinito
Infinito partido por un número
Cero partido por infinito
Cero partido por cero
Infinito partido por infinito
Un número elevado a cero
Cero elevado a cero
14
Infinito elevado a cero
Cero elevado a un número
Un número elevado a infinito
Cero elevado a infinito
Infinito elevado a infinito
Uno elevado a infinito
No distinguimos entre +∞ y -∞ para no alargar excesivamente la lista. Nos basta con
saber:
La regla de los signos y que a-n
= 1/a n
15
Las 7 Indeterminaciones
1. Infinito partido por infinito
2. Infinito menos infinito
3. Cero partido por cero
4. Cero por infinito
5. Cero elevado a cero
6. Infinito elevado a cero
7. Uno elevado a infinito
Cálculo de límites
Cálculo del límite en un punto
Si f(x) es una función (polinómicas, racionales, radicales, exponenciales,
logarítmicas, etc.) y está definida en el punto a, entonces se suele cumplir que:
Es decir: para calcular el límite se sustituye en la función el valor al que tienden las x.
16
No podemos calcular porque el dominio de definición está en el intervalo
[0, ∞), por tanto no puede tomar valores que se acerquen a -2.
Sin embargo si podemos calcular , aunque 3 no pertenezca al
dominio, D= − {2, 3}, si podemos tomar valores del dominio tan próximos a 3 como
queramos.
Cálculo del límite en una función definida a trozos
En primer lugar tenemos que estudiar los límites laterales en los puntos de unión de
los diferentes trozos.
Si coinciden, este es el valor del límite.
Si no coinciden, el límite no existe
.
En x = -1, los límites laterales son:
Por la izquierda:
Por la derecha:
Como en ambos casos coinciden, existe el límite y vale 1.
En x = 1, los límites laterales son:
Por la izquierda:
17
Por la derecha:
Como no coinciden los límites laterales no tiene límite en x = 1.
Cálculo de límites cuando x ∞
Para calcular el límite de una función cuando x ∞ se sustituyen las x por ∞.
Límite de funciones polinómicas en el infinito
El límite cuando x ∞ de una función polinómica es +∞ o -∞ según que el término
de mayor grado sea positivo o negativo.
Límite de la inversa de un polinomio en el infinito
Si P(x) es un polinomio, entonces:
.
Cálculo de límites cuando 𝒙 → −∞
18
No existe el límite, porque el radicando toma valores negativos.
Límite de la función exponencial
Si a > 0
Si 0 < a < 1
19
Ejemplo:
Límite de la función logarítmica
Si a > 0
20
Si 0 < a < 1
21
Límites de logaritmos
Comparación de infinitos
1. f(x) es un infinito de orden superior a g(x) si:
2. f(x) es un infinito de orden inferior a g(x) si:
2. f(x) es un infinito de igual orden a g(x) si:
22
Dadas dos potencias de x, la de mayor exponente es un infinito de orden superior.
Dadas dos funciones exponenciales de base mayor que 1, la de mayor base es un
infinito de orden superior.
Cualquier función exponencial de base mayor que 1 es un infinito de orden superior a
cualquier potencia de x.
Las potencias de x son infinitos de orden superior a las funciones logarítmicas.
Dos polinomios del mismo grado o dos exponenciales de la misma base son infinitos
del mismo orden.
Ejemplos:
Hallar los límites por comparación de infinitos:
Límites del tipo
El límite puede ser +∞, -∞ ó no tener límite.
Ejemplo:
Tomamos los límites laterales para determinar el signo de ∞.
Si le damos a la x un valor que se acerque a -1 por la izquierda como -1,1; tanto el
numerador como denominador son negativos, por lo que el límite por la izquierda será: +∞.
23
Si le damos a la x un valor que se acerque a -1 por la derecha como -0,9. El
numerador será positivo y el denominador negativo, por lo que el límite por la derecha
será: - ∞.
Como no coinciden los límites laterales, la función no tiene límite cuando x -1.
Ejemplo:
Ejemplo:
Indeterminación infinito partido infinito
24
Podemos resolver esta indeterminación por dos métodos:
1. Por comparación de infinitos.
El numerador tiene mayor grado que el denominador.
El denominador tiene mayor grado que el numerador.
Al tener el mismo grado el límite es el cociente entre los coeficientes de mayor grado.
25
2. Si se trata de funciones potenciales dividimos todos los sumandos por la x
elevada al mayor exponente.
Si son funciones exponenciales dividimos por la exponencial de mayor base.
Indeterminación infinito menos infinito
1. Por comparación de infinitos.
26
2. Con funciones racionales.
Ponemos a común denominador, y obtenemos . Resolvemos esta
indeterminación.
3. Cuando se trata de funciones irracionales podemos multiplicar y dividir por
el conjugado.
Indeterminación cero partido cero
1. Función racional sin radicales:
Se descomponen en factores los polinomios y se simplifica la fracción.
27
No tiene límite en x = -1
2. Función racional con radicales:
En primer lugar multiplicamos numerador y denominador por el conjugado de la
expresión irracional.
Realizamos las operaciones y simplificamos la fracción.
Indeterminación cero por infinito
Se transforma a ó a
28
Ejemplo:
Indeterminación uno elevado a infinito
Se resuelve transformando la expresión en una potencia del número e.
1er
Método:
29
2º Método:

Más contenido relacionado

La actualidad más candente

Funciones racionales
Funciones racionalesFunciones racionales
Funciones racionalesJuliana Isola
 
INTEGRALES IMPROPIAS
INTEGRALES IMPROPIASINTEGRALES IMPROPIAS
INTEGRALES IMPROPIASDi Pater
 
Función raíz cuadrada
Función raíz cuadradaFunción raíz cuadrada
Función raíz cuadradasitayanis
 
Representación en series de Fourier
Representación en series de FourierRepresentación en series de Fourier
Representación en series de Fouriermarianyelimendez
 
1 funciones, limites, continuidad
1 funciones, limites, continuidad1 funciones, limites, continuidad
1 funciones, limites, continuidadHenry Romero
 
FUNCIONES RACIONALES
FUNCIONES RACIONALESFUNCIONES RACIONALES
FUNCIONES RACIONALESCris Panchi
 
Investigacion calculo derivadas e integrales
Investigacion calculo derivadas e integralesInvestigacion calculo derivadas e integrales
Investigacion calculo derivadas e integralesAnel Sosa
 
Ecuaciones paramétricas
Ecuaciones paramétricas  Ecuaciones paramétricas
Ecuaciones paramétricas claudiabolivar3
 
Integrales de superficie
Integrales de superficieIntegrales de superficie
Integrales de superficieNobu Dragon
 
Función Cuadrática.
Función Cuadrática.Función Cuadrática.
Función Cuadrática.pablo_dolz
 
Asíntotas
AsíntotasAsíntotas
AsíntotasMar Tuxi
 
Exámenes resueltos de Topología
Exámenes resueltos de TopologíaExámenes resueltos de Topología
Exámenes resueltos de TopologíaAntonio Sanchez
 
Transformaciòn de funciones
Transformaciòn de funcionesTransformaciòn de funciones
Transformaciòn de funcionesblm575692
 
Material Teorema de Rolle y Teorema del Valor Medio
Material Teorema de Rolle y Teorema del Valor MedioMaterial Teorema de Rolle y Teorema del Valor Medio
Material Teorema de Rolle y Teorema del Valor Mediofaragon66
 
Crecimiento y decrecimiento de una función
Crecimiento y decrecimiento de una funciónCrecimiento y decrecimiento de una función
Crecimiento y decrecimiento de una funciónNitza Urbina Rivera
 
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...dinorkis
 

La actualidad más candente (20)

Funciones racionales
Funciones racionalesFunciones racionales
Funciones racionales
 
INTEGRALES IMPROPIAS
INTEGRALES IMPROPIASINTEGRALES IMPROPIAS
INTEGRALES IMPROPIAS
 
Función raíz cuadrada
Función raíz cuadradaFunción raíz cuadrada
Función raíz cuadrada
 
Representación en series de Fourier
Representación en series de FourierRepresentación en series de Fourier
Representación en series de Fourier
 
1 funciones, limites, continuidad
1 funciones, limites, continuidad1 funciones, limites, continuidad
1 funciones, limites, continuidad
 
Funciones
FuncionesFunciones
Funciones
 
FUNCIONES RACIONALES
FUNCIONES RACIONALESFUNCIONES RACIONALES
FUNCIONES RACIONALES
 
Investigacion calculo derivadas e integrales
Investigacion calculo derivadas e integralesInvestigacion calculo derivadas e integrales
Investigacion calculo derivadas e integrales
 
Ecuaciones paramétricas
Ecuaciones paramétricas  Ecuaciones paramétricas
Ecuaciones paramétricas
 
Integrales de superficie
Integrales de superficieIntegrales de superficie
Integrales de superficie
 
Función Cuadrática.
Función Cuadrática.Función Cuadrática.
Función Cuadrática.
 
Teoria de limites
Teoria de limitesTeoria de limites
Teoria de limites
 
Asíntotas
AsíntotasAsíntotas
Asíntotas
 
Exámenes resueltos de Topología
Exámenes resueltos de TopologíaExámenes resueltos de Topología
Exámenes resueltos de Topología
 
axiomas de algebra
axiomas de algebraaxiomas de algebra
axiomas de algebra
 
Transformaciòn de funciones
Transformaciòn de funcionesTransformaciòn de funciones
Transformaciòn de funciones
 
Material Teorema de Rolle y Teorema del Valor Medio
Material Teorema de Rolle y Teorema del Valor MedioMaterial Teorema de Rolle y Teorema del Valor Medio
Material Teorema de Rolle y Teorema del Valor Medio
 
Limites
LimitesLimites
Limites
 
Crecimiento y decrecimiento de una función
Crecimiento y decrecimiento de una funciónCrecimiento y decrecimiento de una función
Crecimiento y decrecimiento de una función
 
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
Aplicar derivadas en el cálculo de velocidad y aceleración de un objeto que s...
 

Destacado

Límites de funciones, continuidad: ejercicios resueltos
Límites de funciones, continuidad: ejercicios resueltosLímites de funciones, continuidad: ejercicios resueltos
Límites de funciones, continuidad: ejercicios resueltosGraciela Slekis Riffel
 
Introduccion a calculo
Introduccion a calculoIntroduccion a calculo
Introduccion a calculoCess Pino
 
Limites y aplicaciones
Limites y aplicacionesLimites y aplicaciones
Limites y aplicacionesManolo Torres
 
Presentación historia del concepto de limite
Presentación historia del concepto de limitePresentación historia del concepto de limite
Presentación historia del concepto de limiteizumorin
 
Limite de una funcion
Limite de una funcionLimite de una funcion
Limite de una funcionMarioAlcaraz
 
Teoremas sobre Límites de funciones
Teoremas sobre Límites de funcionesTeoremas sobre Límites de funciones
Teoremas sobre Límites de funcionesJosé
 
Aplicación de la regla de l hopital
Aplicación de la regla de l hopitalAplicación de la regla de l hopital
Aplicación de la regla de l hopitalstromboly1
 
Aplicaciones de la derivada, trabajo final
Aplicaciones de la derivada, trabajo finalAplicaciones de la derivada, trabajo final
Aplicaciones de la derivada, trabajo finaldagosli
 
Regla de l´hopital
Regla de l´hopitalRegla de l´hopital
Regla de l´hopitalKeos21
 
Ejercicios resueltos de derivadas
Ejercicios resueltos de derivadasEjercicios resueltos de derivadas
Ejercicios resueltos de derivadasBeatrizBarrera
 
DEMIDOVICH problemas y ejercicios de Analisis Matematico
DEMIDOVICH problemas y ejercicios de Analisis MatematicoDEMIDOVICH problemas y ejercicios de Analisis Matematico
DEMIDOVICH problemas y ejercicios de Analisis MatematicoHernan Jesus Quispe Gutierrez
 
Operaciones Con Funciones
Operaciones Con FuncionesOperaciones Con Funciones
Operaciones Con FuncionesAngel Carreras
 
Lección 1.7 Operaciones Con Funciones Ce L
Lección 1.7 Operaciones Con Funciones Ce LLección 1.7 Operaciones Con Funciones Ce L
Lección 1.7 Operaciones Con Funciones Ce LPomales CeL
 
Aplicación de derivadas en modelos matemáticos
Aplicación de derivadas en modelos matemáticos Aplicación de derivadas en modelos matemáticos
Aplicación de derivadas en modelos matemáticos tatu906019
 

Destacado (20)

Límites de funciones, continuidad: ejercicios resueltos
Límites de funciones, continuidad: ejercicios resueltosLímites de funciones, continuidad: ejercicios resueltos
Límites de funciones, continuidad: ejercicios resueltos
 
Ensayo limites completado
Ensayo limites completadoEnsayo limites completado
Ensayo limites completado
 
Introduccion a calculo
Introduccion a calculoIntroduccion a calculo
Introduccion a calculo
 
Limites y aplicaciones
Limites y aplicacionesLimites y aplicaciones
Limites y aplicaciones
 
Presentación historia del concepto de limite
Presentación historia del concepto de limitePresentación historia del concepto de limite
Presentación historia del concepto de limite
 
Limite de una funcion
Limite de una funcionLimite de una funcion
Limite de una funcion
 
Teoremas sobre Límites de funciones
Teoremas sobre Límites de funcionesTeoremas sobre Límites de funciones
Teoremas sobre Límites de funciones
 
Teoria de limites
Teoria de limitesTeoria de limites
Teoria de limites
 
Aplicación de la regla de l hopital
Aplicación de la regla de l hopitalAplicación de la regla de l hopital
Aplicación de la regla de l hopital
 
Límites
LímitesLímites
Límites
 
Trabajo resumen derivada versión final
Trabajo resumen derivada versión finalTrabajo resumen derivada versión final
Trabajo resumen derivada versión final
 
Aplicaciones de la derivada, trabajo final
Aplicaciones de la derivada, trabajo finalAplicaciones de la derivada, trabajo final
Aplicaciones de la derivada, trabajo final
 
Todo sobre las funciones
Todo sobre las funcionesTodo sobre las funciones
Todo sobre las funciones
 
Regla de l´hopital
Regla de l´hopitalRegla de l´hopital
Regla de l´hopital
 
Ejercicios resueltos de derivadas
Ejercicios resueltos de derivadasEjercicios resueltos de derivadas
Ejercicios resueltos de derivadas
 
Funciones
FuncionesFunciones
Funciones
 
DEMIDOVICH problemas y ejercicios de Analisis Matematico
DEMIDOVICH problemas y ejercicios de Analisis MatematicoDEMIDOVICH problemas y ejercicios de Analisis Matematico
DEMIDOVICH problemas y ejercicios de Analisis Matematico
 
Operaciones Con Funciones
Operaciones Con FuncionesOperaciones Con Funciones
Operaciones Con Funciones
 
Lección 1.7 Operaciones Con Funciones Ce L
Lección 1.7 Operaciones Con Funciones Ce LLección 1.7 Operaciones Con Funciones Ce L
Lección 1.7 Operaciones Con Funciones Ce L
 
Aplicación de derivadas en modelos matemáticos
Aplicación de derivadas en modelos matemáticos Aplicación de derivadas en modelos matemáticos
Aplicación de derivadas en modelos matemáticos
 

Similar a Límites de funciones y conceptos básicos de cálculo

Similar a Límites de funciones y conceptos básicos de cálculo (20)

Libro ejercicios
Libro ejerciciosLibro ejercicios
Libro ejercicios
 
Tema 6
Tema 6Tema 6
Tema 6
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
 
Expo- limites .pptx
Expo- limites .pptxExpo- limites .pptx
Expo- limites .pptx
 
Limites y continuidad de funciones
Limites y continuidad de funciones Limites y continuidad de funciones
Limites y continuidad de funciones
 
Guía función racional
Guía función racionalGuía función racional
Guía función racional
 
Limites aplicadas fb
Limites aplicadas fbLimites aplicadas fb
Limites aplicadas fb
 
2da evaluacion de matematica, presentacion
2da evaluacion de matematica, presentacion2da evaluacion de matematica, presentacion
2da evaluacion de matematica, presentacion
 
Álgebra Funciones Polimoniales y Racionales
Álgebra Funciones Polimoniales y RacionalesÁlgebra Funciones Polimoniales y Racionales
Álgebra Funciones Polimoniales y Racionales
 
Limites
LimitesLimites
Limites
 
Definición de los limites y su continuidad.
Definición de los limites y su continuidad.Definición de los limites y su continuidad.
Definición de los limites y su continuidad.
 
Limites
LimitesLimites
Limites
 
Representación De Funciones
Representación De FuncionesRepresentación De Funciones
Representación De Funciones
 
Definición de límites, continuidad y derivadas
Definición de límites, continuidad y derivadasDefinición de límites, continuidad y derivadas
Definición de límites, continuidad y derivadas
 
Funciones trascendentes
Funciones trascendentesFunciones trascendentes
Funciones trascendentes
 
Límites de funciones
Límites de funcionesLímites de funciones
Límites de funciones
 
Limites y continuidad
Limites y continuidadLimites y continuidad
Limites y continuidad
 
Matematica 2
Matematica 2Matematica 2
Matematica 2
 
Guía función racional
Guía función racionalGuía función racional
Guía función racional
 
Portafolio calculo 3 limites
Portafolio calculo 3 limitesPortafolio calculo 3 limites
Portafolio calculo 3 limites
 

Más de Graciela Slekis Riffel

Síndrome de Diógenes: Impactos en el sujeto, la comunidad y los abordajes est...
Síndrome de Diógenes: Impactos en el sujeto, la comunidad y los abordajes est...Síndrome de Diógenes: Impactos en el sujeto, la comunidad y los abordajes est...
Síndrome de Diógenes: Impactos en el sujeto, la comunidad y los abordajes est...Graciela Slekis Riffel
 
Las emociones, comprenderlas para vivir mejor.
Las emociones, comprenderlas para vivir mejor.Las emociones, comprenderlas para vivir mejor.
Las emociones, comprenderlas para vivir mejor.Graciela Slekis Riffel
 
EL TANGO, patrimonio cultural - Guía actividades 2013
EL TANGO, patrimonio cultural - Guía actividades 2013 EL TANGO, patrimonio cultural - Guía actividades 2013
EL TANGO, patrimonio cultural - Guía actividades 2013 Graciela Slekis Riffel
 
Trastornos de la conducta. Una guía de intervención en la escuela.
Trastornos de la conducta. Una guía de intervención en la escuela.Trastornos de la conducta. Una guía de intervención en la escuela.
Trastornos de la conducta. Una guía de intervención en la escuela.Graciela Slekis Riffel
 
Yo Estudio y Trabajo - Bases y condiciones
Yo Estudio y Trabajo - Bases y condicionesYo Estudio y Trabajo - Bases y condiciones
Yo Estudio y Trabajo - Bases y condicionesGraciela Slekis Riffel
 
Guía para educadores de niños autistas
Guía para educadores de niños autistasGuía para educadores de niños autistas
Guía para educadores de niños autistasGraciela Slekis Riffel
 
IDENTIDAD NACIONAL: Uruguay y el resto del mundo
IDENTIDAD NACIONAL: Uruguay y el resto del mundoIDENTIDAD NACIONAL: Uruguay y el resto del mundo
IDENTIDAD NACIONAL: Uruguay y el resto del mundoGraciela Slekis Riffel
 
Hongos tóxicos y comestibles en Uruguay, guía visual
Hongos tóxicos y comestibles en Uruguay, guía visualHongos tóxicos y comestibles en Uruguay, guía visual
Hongos tóxicos y comestibles en Uruguay, guía visualGraciela Slekis Riffel
 
“Manual de alimentación para los trabajadores uruguayos”
“Manual de alimentación para los trabajadores uruguayos”“Manual de alimentación para los trabajadores uruguayos”
“Manual de alimentación para los trabajadores uruguayos”Graciela Slekis Riffel
 
Revista Rampa: capacidades diferentes, julio 2013
Revista Rampa: capacidades diferentes, julio 2013Revista Rampa: capacidades diferentes, julio 2013
Revista Rampa: capacidades diferentes, julio 2013Graciela Slekis Riffel
 
Problema de las drogas en las Américas
Problema de las drogas en las AméricasProblema de las drogas en las Américas
Problema de las drogas en las AméricasGraciela Slekis Riffel
 

Más de Graciela Slekis Riffel (20)

Síndrome de Diógenes: Impactos en el sujeto, la comunidad y los abordajes est...
Síndrome de Diógenes: Impactos en el sujeto, la comunidad y los abordajes est...Síndrome de Diógenes: Impactos en el sujeto, la comunidad y los abordajes est...
Síndrome de Diógenes: Impactos en el sujeto, la comunidad y los abordajes est...
 
Biodiversidad terrestre de Uruguay
Biodiversidad terrestre de UruguayBiodiversidad terrestre de Uruguay
Biodiversidad terrestre de Uruguay
 
Perfil del internauta uruguayo
Perfil del internauta uruguayoPerfil del internauta uruguayo
Perfil del internauta uruguayo
 
Las emociones, comprenderlas para vivir mejor.
Las emociones, comprenderlas para vivir mejor.Las emociones, comprenderlas para vivir mejor.
Las emociones, comprenderlas para vivir mejor.
 
EL TANGO, patrimonio cultural - Guía actividades 2013
EL TANGO, patrimonio cultural - Guía actividades 2013 EL TANGO, patrimonio cultural - Guía actividades 2013
EL TANGO, patrimonio cultural - Guía actividades 2013
 
Guía para privados de libertad
Guía para privados de libertadGuía para privados de libertad
Guía para privados de libertad
 
Trastornos de la conducta. Una guía de intervención en la escuela.
Trastornos de la conducta. Una guía de intervención en la escuela.Trastornos de la conducta. Una guía de intervención en la escuela.
Trastornos de la conducta. Una guía de intervención en la escuela.
 
Yo Estudio y Trabajo - Bases y condiciones
Yo Estudio y Trabajo - Bases y condicionesYo Estudio y Trabajo - Bases y condiciones
Yo Estudio y Trabajo - Bases y condiciones
 
Informe flor de ceibo
Informe flor de ceibo Informe flor de ceibo
Informe flor de ceibo
 
Guía para educadores de niños autistas
Guía para educadores de niños autistasGuía para educadores de niños autistas
Guía para educadores de niños autistas
 
Cómo manejarte si te paran
Cómo manejarte si te paranCómo manejarte si te paran
Cómo manejarte si te paran
 
La lógica matemática
La lógica matemáticaLa lógica matemática
La lógica matemática
 
Reporte 2013 - Uruguay social
Reporte 2013 -  Uruguay socialReporte 2013 -  Uruguay social
Reporte 2013 - Uruguay social
 
IDENTIDAD NACIONAL: Uruguay y el resto del mundo
IDENTIDAD NACIONAL: Uruguay y el resto del mundoIDENTIDAD NACIONAL: Uruguay y el resto del mundo
IDENTIDAD NACIONAL: Uruguay y el resto del mundo
 
Porcentaje: concepto y cálculos
Porcentaje: concepto y cálculosPorcentaje: concepto y cálculos
Porcentaje: concepto y cálculos
 
Hongos tóxicos y comestibles en Uruguay, guía visual
Hongos tóxicos y comestibles en Uruguay, guía visualHongos tóxicos y comestibles en Uruguay, guía visual
Hongos tóxicos y comestibles en Uruguay, guía visual
 
“Manual de alimentación para los trabajadores uruguayos”
“Manual de alimentación para los trabajadores uruguayos”“Manual de alimentación para los trabajadores uruguayos”
“Manual de alimentación para los trabajadores uruguayos”
 
Revista Rampa: capacidades diferentes, julio 2013
Revista Rampa: capacidades diferentes, julio 2013Revista Rampa: capacidades diferentes, julio 2013
Revista Rampa: capacidades diferentes, julio 2013
 
Atlas de la desigualdad en el uruguay
Atlas de la desigualdad en el uruguayAtlas de la desigualdad en el uruguay
Atlas de la desigualdad en el uruguay
 
Problema de las drogas en las Américas
Problema de las drogas en las AméricasProblema de las drogas en las Américas
Problema de las drogas en las Américas
 

Último

MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...JAVIER SOLIS NOYOLA
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfAngélica Soledad Vega Ramírez
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularMooPandrea
 
Éteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesÉteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesLauraColom3
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Alejandrino Halire Ccahuana
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...JAVIER SOLIS NOYOLA
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSjlorentemartos
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
CLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfCLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfJonathanCovena1
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfNancyLoaa
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 

Último (20)

MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
ACERTIJO DE LA BANDERA OLÍMPICA CON ECUACIONES DE LA CIRCUNFERENCIA. Por JAVI...
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
Éteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reaccionesÉteres. Química Orgánica. Propiedades y reacciones
Éteres. Química Orgánica. Propiedades y reacciones
 
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
Lecciones 05 Esc. Sabática. Fe contra todo pronóstico.
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOSTEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
TEMA 13 ESPAÑA EN DEMOCRACIA:DISTINTOS GOBIERNOS
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdfPlanificacion Anual 4to Grado Educacion Primaria   2024   Ccesa007.pdf
Planificacion Anual 4to Grado Educacion Primaria 2024 Ccesa007.pdf
 
CLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdfCLASE - La visión y misión organizacionales.pdf
CLASE - La visión y misión organizacionales.pdf
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
Cuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdfCuaderno de trabajo Matemática 3 tercer grado.pdf
Cuaderno de trabajo Matemática 3 tercer grado.pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 

Límites de funciones y conceptos básicos de cálculo

  • 1. 1 Idea intuitiva de límite El límite de la función f(x) en el punto x0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x0. Es decir el valor al que tienden las imágenes cuando los originales tienden a x0. Vamos a estudiar el límite de la función f(x) = x2 en el punto x0 = 2. x f(x) 1,9 3,61 1,99 3,9601 1,999 3,996001 ... ... ↓ ↓ 2 4 x f(x) 2,1 4.41 2,01 4,0401 2,001 4,004001 ... ... ↓ ↓ 2 4 Tanto si nos acercamos a 2 por la izquierda (valores menores que 2) o la derecha (valores mayores que 2) las imágenes se acercan a 4. Se dice que el límite cuando x tiende a 2 de la función f(x) = x2 es 4 𝐒𝐞 𝐞𝐬𝐜𝐫𝐢𝐛𝐞 𝐥𝐢𝐦 𝒙→𝟐 𝒙 𝟐 = 𝟒 Límite de una función
  • 2. 2 Def. de límite de una función en un punto Se dice que la función f(x) tiene como límite el número L, cuando x tiende a x0, si fijado un número real positivo ε , mayor que cero, existe un numero positivo δ dependiente de ε , tal que, para todos los valores de x distintos de x0 que cumplen la condición |x - x0| < δ , se cumple que |f(x) - L| <ε . También podemos definir el concepto de límite a través de entornos: si y sólo si, para cualquier entorno de L que tomemos, por pequeño que sea su radio, existe un entorno de x0 , Eδ(x0) , cuyos elementos (sin contar x0), tienen sus imágenes dentro del entorno de L , Eε(L). Límites laterales Diremos que el límite de una función f(x) cuando x tiende hacia a por la izquierda es L, si y sólo si para todo ε > 0 existe δ > 0 tal que si x ∈ (a+δ, a ) , entonces |f (x) - L| <ε . Diremos que el límite de una función f(x) cuando x tiende hacia a por la derecha es L , si y sólo si para todo ε > 0 existe δ > 0 tal que si x ∈ (a, a + δ), , entonces |f (x) - L| <ε .
  • 3. 3 El límite de una función en un punto si existe, es único. Para que exista el límite de una función en un punto, tienen que existir los límites laterales en ese punto y coincidir. Ejemplo: En este caso vemos que el límite tanto por la izquierda como por la derecha cuando x tiende a 2 es 4. El límite de la función es 4 aunque la función no tenga imagen en x = 2. Para calcular el límite de una función en un punto, no nos interesa lo que sucede en dicho punto sino a su alrededor.
  • 4. 4 Ejemplo Dada la función: Hallar . Como no coinciden los límites laterales, la función no tiene límite en x = 0. Limites infinitos Límite más infinito Una función f(x) tiene por límite +∞ cuando x → a, si para todo número real positivo (K>0 )se verifica que f(x)>k para todos los valores próximos a a. 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 = ∞ ∀𝑲 ∈ 𝑹+ ∃𝜹 = 𝜹 𝑲 > 𝟎/ 𝟎< 𝒙 − 𝒂 < 𝜹 𝒇 𝒙 > 𝒌 Ejemplo:
  • 5. 5 Límite menos infinito Una función f(x) tiene por límite -∞ cuando x a, si fijado un número real negativo K < 0 se verifica que f(x) < k para todos los valores próximos a a. 𝐥𝐢𝐦 𝒙→𝒂 𝒇 𝒙 = −∞ ∀𝑲 ∈ 𝑹− ∃𝜹 = 𝜹 𝑲 > 𝟎/ 𝟎< 𝒙 − 𝒂 < 𝜹 𝒇 𝒙 < 𝒌 Ejemplo: Límites en el infinito Límite cuando x tiende a infinito Límite cuando x tiende a menos infinito
  • 7. 7 Asíntotas Asíntotas horizontales Si se cumple que Ejemplo Calcular las asíntotas horizontales de la función: Asíntotas verticales Es una asíntota horizontal
  • 8. 8 Asíntotas verticales Si se cumple que Los valores de K hay que buscarlos entre los puntos que no pertenecen al dominio de la función Ejemplo Calcular las asíntotas horizontales y verticales de la función: Es una asíntota vertical
  • 9. 9 Asíntotas oblicuas Tienen la forma Sólo hallaremos las asíntotas oblicuas cuando no haya asíntotas horizontales. Ejemplo Calcular las asíntotas de la función: Asíntotas horizontales No hay asíntotas horizontales Asíntotas verticales Asíntotas oblicuas
  • 10. 10 Ramas parabólicas Las ramas parabólicas se estudian sólo si: Rama parabólica en la dirección del eje OY Se dice que f tiene una rama parabólica en la dirección del eje OY cuando: Esto quiere decir que la gráfica se comporta como una parábola de eje vertical. Ejemplo Estudiar las ramas parabólicas de la función: Tiene una rama parabólica en la dirección del eje OY.
  • 11. 11 Rama parabólica en la dirección del eje OX Se dice que f tiene una rama parabólica en la dirección del eje OX cuando: Esto quiere decir que la gráfica se comporta como una parábola de eje horizontal. Ejemplo Estudiar las ramas parabólicas de la función: Tiene una rama parabólica en la dirección del eje OX.
  • 12. 12 Propiedades de los límites Límite de una constante Límite de una suma Límite de un producto Límite de un cociente Límite de una potencia Límite de un logaritmo Operaciones con infinito: Indeterminaciones Infinito más un número Infinito más infinito Infinito menos infinito
  • 13. 13 Infinito por un número Infinito por infinito Infinito por cero Cero partido por un número Un número partido por cero Un número partido por infinito Infinito partido por un número Cero partido por infinito Cero partido por cero Infinito partido por infinito Un número elevado a cero Cero elevado a cero
  • 14. 14 Infinito elevado a cero Cero elevado a un número Un número elevado a infinito Cero elevado a infinito Infinito elevado a infinito Uno elevado a infinito No distinguimos entre +∞ y -∞ para no alargar excesivamente la lista. Nos basta con saber: La regla de los signos y que a-n = 1/a n
  • 15. 15 Las 7 Indeterminaciones 1. Infinito partido por infinito 2. Infinito menos infinito 3. Cero partido por cero 4. Cero por infinito 5. Cero elevado a cero 6. Infinito elevado a cero 7. Uno elevado a infinito Cálculo de límites Cálculo del límite en un punto Si f(x) es una función (polinómicas, racionales, radicales, exponenciales, logarítmicas, etc.) y está definida en el punto a, entonces se suele cumplir que: Es decir: para calcular el límite se sustituye en la función el valor al que tienden las x.
  • 16. 16 No podemos calcular porque el dominio de definición está en el intervalo [0, ∞), por tanto no puede tomar valores que se acerquen a -2. Sin embargo si podemos calcular , aunque 3 no pertenezca al dominio, D= − {2, 3}, si podemos tomar valores del dominio tan próximos a 3 como queramos. Cálculo del límite en una función definida a trozos En primer lugar tenemos que estudiar los límites laterales en los puntos de unión de los diferentes trozos. Si coinciden, este es el valor del límite. Si no coinciden, el límite no existe . En x = -1, los límites laterales son: Por la izquierda: Por la derecha: Como en ambos casos coinciden, existe el límite y vale 1. En x = 1, los límites laterales son: Por la izquierda:
  • 17. 17 Por la derecha: Como no coinciden los límites laterales no tiene límite en x = 1. Cálculo de límites cuando x ∞ Para calcular el límite de una función cuando x ∞ se sustituyen las x por ∞. Límite de funciones polinómicas en el infinito El límite cuando x ∞ de una función polinómica es +∞ o -∞ según que el término de mayor grado sea positivo o negativo. Límite de la inversa de un polinomio en el infinito Si P(x) es un polinomio, entonces: . Cálculo de límites cuando 𝒙 → −∞
  • 18. 18 No existe el límite, porque el radicando toma valores negativos. Límite de la función exponencial Si a > 0 Si 0 < a < 1
  • 19. 19 Ejemplo: Límite de la función logarítmica Si a > 0
  • 20. 20 Si 0 < a < 1
  • 21. 21 Límites de logaritmos Comparación de infinitos 1. f(x) es un infinito de orden superior a g(x) si: 2. f(x) es un infinito de orden inferior a g(x) si: 2. f(x) es un infinito de igual orden a g(x) si:
  • 22. 22 Dadas dos potencias de x, la de mayor exponente es un infinito de orden superior. Dadas dos funciones exponenciales de base mayor que 1, la de mayor base es un infinito de orden superior. Cualquier función exponencial de base mayor que 1 es un infinito de orden superior a cualquier potencia de x. Las potencias de x son infinitos de orden superior a las funciones logarítmicas. Dos polinomios del mismo grado o dos exponenciales de la misma base son infinitos del mismo orden. Ejemplos: Hallar los límites por comparación de infinitos: Límites del tipo El límite puede ser +∞, -∞ ó no tener límite. Ejemplo: Tomamos los límites laterales para determinar el signo de ∞. Si le damos a la x un valor que se acerque a -1 por la izquierda como -1,1; tanto el numerador como denominador son negativos, por lo que el límite por la izquierda será: +∞.
  • 23. 23 Si le damos a la x un valor que se acerque a -1 por la derecha como -0,9. El numerador será positivo y el denominador negativo, por lo que el límite por la derecha será: - ∞. Como no coinciden los límites laterales, la función no tiene límite cuando x -1. Ejemplo: Ejemplo: Indeterminación infinito partido infinito
  • 24. 24 Podemos resolver esta indeterminación por dos métodos: 1. Por comparación de infinitos. El numerador tiene mayor grado que el denominador. El denominador tiene mayor grado que el numerador. Al tener el mismo grado el límite es el cociente entre los coeficientes de mayor grado.
  • 25. 25 2. Si se trata de funciones potenciales dividimos todos los sumandos por la x elevada al mayor exponente. Si son funciones exponenciales dividimos por la exponencial de mayor base. Indeterminación infinito menos infinito 1. Por comparación de infinitos.
  • 26. 26 2. Con funciones racionales. Ponemos a común denominador, y obtenemos . Resolvemos esta indeterminación. 3. Cuando se trata de funciones irracionales podemos multiplicar y dividir por el conjugado. Indeterminación cero partido cero 1. Función racional sin radicales: Se descomponen en factores los polinomios y se simplifica la fracción.
  • 27. 27 No tiene límite en x = -1 2. Función racional con radicales: En primer lugar multiplicamos numerador y denominador por el conjugado de la expresión irracional. Realizamos las operaciones y simplificamos la fracción. Indeterminación cero por infinito Se transforma a ó a
  • 28. 28 Ejemplo: Indeterminación uno elevado a infinito Se resuelve transformando la expresión en una potencia del número e. 1er Método: