SlideShare una empresa de Scribd logo
1 de 11
Descargar para leer sin conexión
Luis Gonzalo Revelo Pabón 57
                                                                             Dpto. de Matemáticas - Goretti

LA IGUALDAD: son expresiones numéricas o algebraicas que se encuentran en el primero y segundo
miembro de una igualdad, separadas por el signo de igualdad (=). Donde la igualdad puede ser falsa o
verdadera.

La igualdad es numérica si solo tiene números y la igualdad es algebraica (o literal) si tiene números y
letras.
Por ejemplo, son Igualdades Numéricas y Algebraicas
      1. 3+2 = 5     Es una expresión numérica VERDADERA.
           2 2   2
      2. 4 -3 =1     Es una expresión numérica FALSA
               2   2      2
      3. (a+b) =a +2ab+b Es expresión algebraica VERDADERA, para cualquier valor numérico, que
         tome las variables a y b.
      4.             Es expresión algebraica VERDADERA, solamente se cumple para x =21 y para to-
         dos los valores que tome x diferentes a 21, la expresión algebraica es FALSA.

Por tanto hay dos tipos de igualdades a saber: La Identidad algebraica y La Ecuación algebraica.

LA IDENTIDAD ALGEBRAICA: Es una igualdad que se cumple para todos los valores que tome la(s)
variable(s).

Ejemplo 1: La igualdad algebraica                                 es una identidad, ya que es verdadera
para todos los valores que tome x.

Ejemplo 2: La igualdad algebraica                             es una identidad, ya que es verdadera para
todos los valores que tome x, y.

Ejemplo 3: La igualdad algebraica                             es una identidad, ya que es verdadera para
todos los valores que tome x, y.

LA ECUACION ALGEBRAICA: Es una igualdad que se cumple solamente para algunos valores que
tome la(s) variable(s).

Ejemplo 1: La igualdad algebraica 2x = 8 es una ecuación, ya que solamente es válida para x = 4
Ejemplo 2: La igualdad algebraica 4x – 3 = 2x +1 es una ecuación ya que solamente se cumple para x = 2
Ejemplo 3: La igualdad algebraica 4 = 2x(x – 1), es una ecuación, ya que se cumple solamente cuando la
variable x toma los valores de x = 2 y x = – 1

IDENTIDAD TRIGONOMETRICA
Una identidad trigonométrica es una igualdad entre dos expresiones que contienen funciones trigonomé-
tricas y es válida o verdadera para todos los valores permisibles que tome o se le asigne a la variable
angular.

Ejemplo 1: La igualdad                       es una Identidad trigonométrica, ya que se cumple para todos
los valores que tome el ángulo A.

Ejemplo 2: La igualdad                 ⁄       , es una identidad trigonométrica, ya que es verdadera para
todos los valores que tome el ángulo A.

Ejemplo 3: La igualdad            ⁄        , es una identidad trigonométrica, ya que es verdadera para to-
dos los valores que tome el ángulo A.

 Existen tres tipos de identidades llamadas Identidades fundamentales a saber: Identidades trigonométri-
cas por Cociente, Identidades trigonométricas Reciprocas e Identidades trigonométricas Pitagóricas.

RAZONES TRIGONOMETRICAS

                                                         ⁄                                   ⁄

                                                         ⁄                                   ⁄

                                                          ⁄                                  ⁄
Luis Gonzalo Revelo Pabón 58
                                                                                 Dpto. de Matemáticas - Goretti

IDENTIDADES TRIGONOMETRICAS POR COCIENTE:

Denominamos así a las siguientes identidades porque cada una de ellas representa la divicion o cociente
entre dos razones trigonometricas.

    1.   Tang A =


    2.   Cotag A =

IDENTIDADES TRIGONOMÉTRICAS RECIPROCAS

Las siguientes identidades se cumplen o son verdaderas para cualquier valor que se le asigne al ángulo
de la función trigonométrica, con la única excepción de que el denominador no debe ser cero. Las siguien-
tes expresiones se denominan identidades recíprocas:
    1.   Sen A =                                           4.   Cotag A =


    2.   Cos A =                                           5.   Sect A =

    3.   Tang A =                                          6.   Cosec A =

Demostración:

1.- Por definición de razón trigonométrica del Sen A, es igual a:

                                                 Sen A =

El reciproco o inverso de Sen A, será igual a:




                                                      = Cosec A

De igual manera se efectúa, para demostrar a las demás identidades trigonométricas reciprocas.

IDENTIDADES TRIGONOMÉTRICAS PITAGORICAS
Se denominan identidades Pitagóricas, porque son el resultado de la aplicación del teorema de Pitagóri-
cas con las razones trigonométricas.

    1.
    2.
    3.

Demostración:

                                        De acuerdo al teorema de Pitágoras se tiene que:



                                        Al dividir cada uno de los términos de la ecuación entre
                                        Se obtiene que:



                                                                    ( )    ( )
Luis Gonzalo Revelo Pabón 59
                                                                                  Dpto. de Matemáticas - Goretti

Pero:




Al remplazar en la ecuación anterior se obtiene que:

                                                                      ……..(1)

Ahora, al dividir cada uno de los términos de la ecuación pitagórica (1), entre         se obtiene que:



De igual manera al dividir cada uno de los términos de la ecuación pitagórica (1), entre           se obtiene
que:



EJERCICIOS CON LAS IDENTIDADES TRIGONOMETRICAS
Con las identidades trigonométricas fundamentales se puede realizar las siguientes tipos de ejercicios:

     1.     Tipo Simplificación.
     2.     Tipo Demostración.

1.- TIPO SIMPLIFICACION: En este tipo de ejercicios se busca reducir hasta la más mínima expresión, a
la expresión trigonométrica que se haya planteado.

Para la simplificación o reducción de la expresión trigonométrica que se haya plantado o dado, esta sim-
plificación se la obtiene mediante la ayuda de las identidades trigonométricas fundamentales (Identidades
trigonométricas por cociente, inversas y Pitagóricas) y con la realización de factorizaciones, como de la
elaboración de las operaciones que se encuentran en la expresión.

Ejemplos: Efectuar las operaciones indicadas, en cada de las siguientes expresiones:
1.
2.
3.
4.
5.

6.

Solución
1.                                   =
2.                      =
3.                                    =                                .
4.
5.

6.

Ejemplos: Factorizar las siguientes expresiones
1.
2.
3.
4.
5.

Solución:
1.
2.
3.
4.
5.
Luis Gonzalo Revelo Pabón 60
                                                                           Dpto. de Matemáticas - Goretti


Ejemplos: Simplificar cada una de las siguientes expresiones, hasta la más mínima expresión:

1.
2.
3.
4.
5.
6.

7.          +


Solución:

1.                                                              ⁄
2.                             ⁄           ⁄                    ⁄
3.
                        =                       ⁄
4.                                                                             ⁄
5.

6.                                          ⁄                       ⁄

7.          +




                              =

TALLER

Simplificar cada una de las siguientes expresiones, hasta la más mínima expresión:

1.
2.
3.
4.
5.

6.

7.

8.

9. *                   +

10.

2.- TIPO DEMOSTRACION. Para demostrar (verificar) si una Identidad Trigonométrica es verdadera, se
elige a uno cualquiera de los dos miembros de la igualdad y por medio de operaciones algebraicas y de la
aplicación en cada paso que se efectué de las Identidades inversas, Identidades por cociente como de
las Identidades pitagóricas al miembro que se haya elegido, hasta llegar a demostrar que el miembro
elegido es igual al otro miembro de la igualdad.
Luis Gonzalo Revelo Pabón 61
                                                                              Dpto. de Matemáticas - Goretti

En general, se inicia con el miembro de la igualdad más complicado.
Para tener éxito en la demostración o verificación de la Identidad Trigonométrica se requiere tener:

        Una completa familiaridad con la Identidades fundamentales
        Una completa familiaridad con los procedimientos de factorización, y operaciones con fracciona-
         rios, etc.
        Practicar.

Ejemplos: Demostrar las siguientes Identidades.

1.
2.

3.

4.

5.
Solución:
1.
Para demostrar esta identidad elegimos el segundo miembro de la igualdad. Así:




2.
Para verificar esta identidad elegimos el segundo miembro de la igualdad. Así:
                   =




3.

Para demostrar esta identidad elegimos el segundo miembro de la igualdad. Así:




4.
Luis Gonzalo Revelo Pabón 62
                                                                           Dpto. de Matemáticas - Goretti

Para demostrar esta identidad elegimos el primer miembro de la igualdad. Así:




                                  Dividimos cada termino entre Cos A




5.
Para demostrar esta identidad elegimos el primer miembro de la igualdad. Así:




TALLER
Demostrar las siguientes Identidades.

1.
2.
3.                            ⁄
4.
5.

6.

7.

8.
Luis Gonzalo Revelo Pabón 63
                                                                              Dpto. de Matemáticas - Goretti

9.    1

10.

11.

12.

13.


LA ECUACION TRIGONOMETRICA: Es una igualdad que contiene funciones trigonométricas y es ver-
dadera solamente para algunos valores que tome la variable angular.

Resolver una ecuación trigonométrica, es determinar los valores del ángulo desconocido de una función
trigonométrica.

ECUACION TRIGONOMETRICA DE PRIMER GRADO Y SEGUNDO GRADO.
El método para resolver una ecuación trigonométrica con una incógnita de segundo grado consiste en
reducirla a una ecuación algebraica, tomando a la funci ón trigonométrica como una incógnita auxiliar.
Luego se efectúa los siguientes pasos:

      A) Se elige como incógnita a una letra cualquiera del abecedario, a la función trigonométrica cuyo
         ángulo se desea encontrar.
         Donde cada una de las raíces aceptadas, tiene una ecuación trigonométrica de las siguientes
         formas:
      B) Se remplaza en la ecuación donde se encuentra la función trigonométrica por la letra elegida
      C) Por medio de los procedimientos ordinarios del algebra se resuelve la ecuación algebraica, con
         relación a la incógnita auxiliar y se analizan las raíces teniendo en cuenta las condiciones de la
         magnitud a las cuales está sujeta la función trigonométrica.
      D) En este estudio únicamente se ofrecerán soluciones particulares que oscilen entre 0º grados y
         360º grados. (Si se buscan todas las soluciones se tiene en cuenta (180º                      ) o
         (360º            ), de cada resultado obtenido dependiendo del cuadrante donde se encuentre el
         ángulo y el signo que le corresponde a función trigonométrica en cada uno de los cuadrantes.
         Ahora sí el ángulo es negativo para convertirlo en un ángulo positivo aplicamos la expresión
         360º+ (-Angulo negativo))

Ejemplos: Determinar los valores del ángulo x entre 0º y 360º que satisfacen cada una de las siguien-
tes ecuaciones:
1.
2.
3.
4.              √
5.

Solución:
1.
.
.

La función seno es positiva en el primero y segundo cuadrante, por lo tanto el ángulo del segundo cua-
drante es igual a 180º- 30º = 150º. Respuesta: 30º y 150º

2.
.
.

La función coseno es positiva en el primero y cuarto cuadrante, por lo tanto el ángulo en cuarto cuadrante
es igual a 360º - 0º = 360º. Respuesta 0º y 360º

3.
.
.
Luis Gonzalo Revelo Pabón 64
                                                                            Dpto. de Matemáticas - Goretti

Como el ángulo negativo lo convertimos en un ángulo positivo mediante la ecuación: 360º + (-n), rempla-
zamos para obtener: 360º+ (-13,562151º) = 346,437849º

Ahora:
La función seno es negativa en el tercero y cuarto cuadrante, por lo tanto el ángulo del tercer cuadrante
es igual a 180º+ 13,562151º = 193,562151º. Respuesta: 346,437849º y 193,562151º

4.               √
.                          √ .
.

El ángulo negativo lo convertimos a un ángulo positivo mediante la expresión: 360º+(-n), remplazamos
para obtener: 360º - 79,97501214º = 280,0249879º

Ahora, la función tangente es negativa en el segundo y cuarto cuadrante, por lo tanto el ángulo en el se-
gundo cuadrante es igual a 180º - 79,97501214º = 100,0249879º. Respuesta: 280,0249879º y
100,0249879º.

5.
.
.

La función coseno es negativa en el segundo y tercer cuadrante, por lo tanto el ángulo del tercer cuadran-
te es igual a 180º+ 60º = 240º. Respuesta: 120º y 240º

Ejemplos: Resuelva las siguientes ecuaciones trigonométricas.
1.
2.
3.

4.
5.
6.
Solución:
1.
. ⁄
.
.
             √
..

.
    a) .
.
.                     Convertimos a un ángulo positivo.
.
Ahora la función seno sus valores son negativos en tercero y cuarto cuadrante. Por lo tanto en el cuarto
cuadrante el ángulo que satisface a esta ecuación es:

    b)
    .                 Esta ecuación No tiene solución, porque el valor máximo de la función seno es
Respuesta: X=321,8275º y 218,1724º

2.
.
Luis Gonzalo Revelo Pabón 65
                                                   Dpto. de Matemáticas - Goretti

.
.
                √
..

.
    a) .
.
.              Convertimos a un ángulo positivo.
.


    b)
    .
    ..                 Respuesta: A= 30º y 270º

3.
.
.
.
                √
.


.

    a) .
.
.          .
    b)
    .
    ..                 Respuesta: X= 0º y 60º



4.

.
.
.                          .
.
.
               √
.


.

    a) .
.
.
Luis Gonzalo Revelo Pabón 66
                                                                                      Dpto. de Matemáticas - Goretti

    b)
.
Esta ecuación No tiene solución, porque el valor máximo de la función seno es               :
Respuesta: X=30º

5.

. 3(                 ) +5

. 3(                     ) +5

.

.
.
.
.
                     √
.            =

            a)                    ⁄

        .                             (3)

  .                      (3) Esta ecuación no tiene solución porque, porque el valor máximo que toma la función
coseno es                .

            b)                    ⁄

        .                             (0,5)

    .                     (0,5)

. .

 Ahora la función coseno tiene un valor positivo, en el primero y cuarto cuadrante. Por lo tanto el ángulo
que satisface esta ecuación en el cuarto cuadrante es igual a 360º            , remplazando se obtiene:
360º-60º= 300º
Respuesta: Las soluciones de esta ecuación trigonométrica son: 60º y 300º

6.
.
.
                     √
.                =

            a)              ⁄

        .                             (2)

  .                      (2) Esta ecuación no tiene solución porque, porque el valor máximo que toma la función
coseno es                .

            b)                    ⁄

        .                             (1)

    .                     (1)
Luis Gonzalo Revelo Pabón 67
                                                                           Dpto. de Matemáticas - Goretti

. .        y 360º

Respuesta: Las soluciones de esta ecuación trigonométrica son: 0º y 360º

TALLER.
Resuelva las siguientes ecuaciones trigonométricas.
1.                  Rta: 60º y 300º
2.                    Rta: 210º y 330º
3.                    Rta: 45º y 225º
4.                     √ ⁄     Rta: 65º
5.                      .     Rta: 35º
6.                         Rta: 17º
7.                            Rta:0º, 90º, 360º
8.                                 Rta: 90º
9.                            Rta: 45º, 225º
10.          √      Rta: 60º, 120º
11.                        Rta: 90º,210º,330º
12.                                   Rta: 30º, 150º, 210º, 330º
13.                      Rta:30º, 150º
14.                                          Rta: 210º, 270º, 330º
15.                             Rta: 0º, 270º
16.                                    Rta: 90º, 180º, 270º
17.                                           Rta: 114,46º y 245,54º

Más contenido relacionado

La actualidad más candente

Semana 8 ley de coseno, demostración, ejemplos y ejercicios por resolver.
Semana 8   ley de coseno, demostración, ejemplos y ejercicios por resolver.Semana 8   ley de coseno, demostración, ejemplos y ejercicios por resolver.
Semana 8 ley de coseno, demostración, ejemplos y ejercicios por resolver.Elkin J. Navarro
 
Funciones Polinomiales grado 3 y 4. Matemática
 Funciones Polinomiales grado 3 y 4. Matemática  Funciones Polinomiales grado 3 y 4. Matemática
Funciones Polinomiales grado 3 y 4. Matemática Stephanie Pinzón
 
Aplicaciones de los espacios vectoriales en la ingenieria industrial
Aplicaciones de los espacios vectoriales en la ingenieria industrial Aplicaciones de los espacios vectoriales en la ingenieria industrial
Aplicaciones de los espacios vectoriales en la ingenieria industrial ODALYSISABELAZUMBAMO
 
Importancia de la integral definida
Importancia de la integral definidaImportancia de la integral definida
Importancia de la integral definidamanuel macea
 
Funciones trigonometricas equipo 8
Funciones trigonometricas equipo 8Funciones trigonometricas equipo 8
Funciones trigonometricas equipo 8AkatzinJuan
 
Teorema de Cauchy
Teorema de CauchyTeorema de Cauchy
Teorema de CauchyDavid Solis
 
Conjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesConjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesDiego Salazar
 
Derivada Implicita
Derivada ImplicitaDerivada Implicita
Derivada Implicitakijaramillo
 
Historia ecuaciones-diferenciales
Historia ecuaciones-diferencialesHistoria ecuaciones-diferenciales
Historia ecuaciones-diferencialesLuis Chamorro
 
Aplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesAplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesWilson Quinatoa
 
Gnuplot
GnuplotGnuplot
Gnuplotdklajd
 
Aplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
Aplicación del Cálculo Diferencial en la Vida Diaria de un IngenieroAplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
Aplicación del Cálculo Diferencial en la Vida Diaria de un Ingenieronueva-era
 

La actualidad más candente (20)

Teorema del seno y del coseno
Teorema del seno y del cosenoTeorema del seno y del coseno
Teorema del seno y del coseno
 
Semana 8 ley de coseno, demostración, ejemplos y ejercicios por resolver.
Semana 8   ley de coseno, demostración, ejemplos y ejercicios por resolver.Semana 8   ley de coseno, demostración, ejemplos y ejercicios por resolver.
Semana 8 ley de coseno, demostración, ejemplos y ejercicios por resolver.
 
La integral indefinida e identidades trigonometricas
La integral indefinida e identidades trigonometricasLa integral indefinida e identidades trigonometricas
La integral indefinida e identidades trigonometricas
 
Funciones Polinomiales grado 3 y 4. Matemática
 Funciones Polinomiales grado 3 y 4. Matemática  Funciones Polinomiales grado 3 y 4. Matemática
Funciones Polinomiales grado 3 y 4. Matemática
 
Longitud de arco
Longitud de arcoLongitud de arco
Longitud de arco
 
Aplicaciones de los espacios vectoriales en la ingenieria industrial
Aplicaciones de los espacios vectoriales en la ingenieria industrial Aplicaciones de los espacios vectoriales en la ingenieria industrial
Aplicaciones de los espacios vectoriales en la ingenieria industrial
 
Importancia de la integral definida
Importancia de la integral definidaImportancia de la integral definida
Importancia de la integral definida
 
Funciones trigonometricas equipo 8
Funciones trigonometricas equipo 8Funciones trigonometricas equipo 8
Funciones trigonometricas equipo 8
 
Teorema de Cauchy
Teorema de CauchyTeorema de Cauchy
Teorema de Cauchy
 
Conjunto Fundamental de Soluciones
Conjunto Fundamental de SolucionesConjunto Fundamental de Soluciones
Conjunto Fundamental de Soluciones
 
Derivada Implicita
Derivada ImplicitaDerivada Implicita
Derivada Implicita
 
Historia ecuaciones-diferenciales
Historia ecuaciones-diferencialesHistoria ecuaciones-diferenciales
Historia ecuaciones-diferenciales
 
Aplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectorialesAplicaciones de espacios y subespacios vectoriales
Aplicaciones de espacios y subespacios vectoriales
 
Gnuplot
GnuplotGnuplot
Gnuplot
 
Aplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
Aplicación del Cálculo Diferencial en la Vida Diaria de un IngenieroAplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
Aplicación del Cálculo Diferencial en la Vida Diaria de un Ingeniero
 
Calculo Diferencial
Calculo DiferencialCalculo Diferencial
Calculo Diferencial
 
Derivadas
DerivadasDerivadas
Derivadas
 
Limites y continuidad
Limites y continuidadLimites y continuidad
Limites y continuidad
 
Presentacion 4
Presentacion 4Presentacion 4
Presentacion 4
 
Definicion derivada
Definicion derivadaDefinicion derivada
Definicion derivada
 

Similar a Igualdades y funciones trigonométricas

Conceptos simples de teoría de números.pptx
Conceptos simples de teoría de números.pptxConceptos simples de teoría de números.pptx
Conceptos simples de teoría de números.pptxalejandro65082
 
Expresiones algebraicas Liliana Hernández TU0123.pdf
Expresiones algebraicas Liliana Hernández TU0123.pdfExpresiones algebraicas Liliana Hernández TU0123.pdf
Expresiones algebraicas Liliana Hernández TU0123.pdfLilianaHer2
 
A capítulo 2 expresiones algebraicas
A capítulo 2 expresiones algebraicasA capítulo 2 expresiones algebraicas
A capítulo 2 expresiones algebraicasMargarita Patiño
 
Expresiones algebraicas.
Expresiones algebraicas.Expresiones algebraicas.
Expresiones algebraicas.LauraSira1
 
Unidad 1. Álgebra, tigonometría y geometría analitica. Fase 2..pptx
Unidad 1. Álgebra, tigonometría y geometría analitica. Fase 2..pptxUnidad 1. Álgebra, tigonometría y geometría analitica. Fase 2..pptx
Unidad 1. Álgebra, tigonometría y geometría analitica. Fase 2..pptxblogdealgebraunad
 
Actividades extras-polinomios-2
Actividades extras-polinomios-2Actividades extras-polinomios-2
Actividades extras-polinomios-2matespsd
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricasHugo Quito
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricasHugo Quito
 
informe de expreciones algebraicas.docx
informe de expreciones algebraicas.docxinforme de expreciones algebraicas.docx
informe de expreciones algebraicas.docxNaihyvismujicafonsec
 
Stevan y luis fernandez expesiones algebraicas.pdf
Stevan y luis fernandez expesiones algebraicas.pdfStevan y luis fernandez expesiones algebraicas.pdf
Stevan y luis fernandez expesiones algebraicas.pdfmaulopez90u
 
Expresiones algebraicas ecuaciones
Expresiones algebraicas ecuacionesExpresiones algebraicas ecuaciones
Expresiones algebraicas ecuacionesDavid Perez
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricasCarmelo Perez
 

Similar a Igualdades y funciones trigonométricas (20)

Conceptos simples de teoría de números.pptx
Conceptos simples de teoría de números.pptxConceptos simples de teoría de números.pptx
Conceptos simples de teoría de números.pptx
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricas
 
Adriana linarez trabajo
Adriana linarez trabajoAdriana linarez trabajo
Adriana linarez trabajo
 
Expresiones algebraicas Liliana Hernández TU0123.pdf
Expresiones algebraicas Liliana Hernández TU0123.pdfExpresiones algebraicas Liliana Hernández TU0123.pdf
Expresiones algebraicas Liliana Hernández TU0123.pdf
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricas
 
A capítulo 2 expresiones algebraicas
A capítulo 2 expresiones algebraicasA capítulo 2 expresiones algebraicas
A capítulo 2 expresiones algebraicas
 
Expresiones algebraicas.
Expresiones algebraicas.Expresiones algebraicas.
Expresiones algebraicas.
 
Unidad 1. Álgebra, tigonometría y geometría analitica. Fase 2..pptx
Unidad 1. Álgebra, tigonometría y geometría analitica. Fase 2..pptxUnidad 1. Álgebra, tigonometría y geometría analitica. Fase 2..pptx
Unidad 1. Álgebra, tigonometría y geometría analitica. Fase 2..pptx
 
Actividades extras-polinomios-2
Actividades extras-polinomios-2Actividades extras-polinomios-2
Actividades extras-polinomios-2
 
Mat 11 u2
Mat 11 u2Mat 11 u2
Mat 11 u2
 
UNIDAD 2
UNIDAD 2UNIDAD 2
UNIDAD 2
 
Trabajo de matemáticas
Trabajo de matemáticasTrabajo de matemáticas
Trabajo de matemáticas
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricas
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricas
 
informe de expreciones algebraicas.docx
informe de expreciones algebraicas.docxinforme de expreciones algebraicas.docx
informe de expreciones algebraicas.docx
 
Matematicas -unidad_1_(1)
Matematicas  -unidad_1_(1)Matematicas  -unidad_1_(1)
Matematicas -unidad_1_(1)
 
Stevan y luis fernandez expesiones algebraicas.pdf
Stevan y luis fernandez expesiones algebraicas.pdfStevan y luis fernandez expesiones algebraicas.pdf
Stevan y luis fernandez expesiones algebraicas.pdf
 
Expresiones algebraicas ecuaciones
Expresiones algebraicas ecuacionesExpresiones algebraicas ecuaciones
Expresiones algebraicas ecuaciones
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricas
 
Identidades trigonometricas
Identidades trigonometricasIdentidades trigonometricas
Identidades trigonometricas
 

Más de GONZALO REVELO PABON . GORETTI

UNIDAD 5 ECUACION DE PRIMER GRADO -GONZALO REVELO PABON--GORETTI
UNIDAD 5 ECUACION DE PRIMER GRADO -GONZALO REVELO PABON--GORETTIUNIDAD 5 ECUACION DE PRIMER GRADO -GONZALO REVELO PABON--GORETTI
UNIDAD 5 ECUACION DE PRIMER GRADO -GONZALO REVELO PABON--GORETTIGONZALO REVELO PABON . GORETTI
 
Unidad 3 productos notables; GONZALO REVELO PABON-GORETTI
Unidad 3 productos notables; GONZALO REVELO PABON-GORETTIUnidad 3 productos notables; GONZALO REVELO PABON-GORETTI
Unidad 3 productos notables; GONZALO REVELO PABON-GORETTIGONZALO REVELO PABON . GORETTI
 
Unidad 3 MEDIDAS DE DISPERSION - GONZALO REVELO PABON
Unidad 3 MEDIDAS DE DISPERSION - GONZALO REVELO PABON Unidad 3 MEDIDAS DE DISPERSION - GONZALO REVELO PABON
Unidad 3 MEDIDAS DE DISPERSION - GONZALO REVELO PABON GONZALO REVELO PABON . GORETTI
 
CONSTRUCCION DE UNA UNIDAD DIDACTICA O PIA GONZALO REVELO PABON
CONSTRUCCION DE UNA UNIDAD DIDACTICA O PIA  GONZALO REVELO PABONCONSTRUCCION DE UNA UNIDAD DIDACTICA O PIA  GONZALO REVELO PABON
CONSTRUCCION DE UNA UNIDAD DIDACTICA O PIA GONZALO REVELO PABONGONZALO REVELO PABON . GORETTI
 
Unidad 4. sistema de ecuaciones lineales 2 x2 GONZALO REVELO PABON
Unidad 4. sistema de ecuaciones lineales 2 x2 GONZALO REVELO PABONUnidad 4. sistema de ecuaciones lineales 2 x2 GONZALO REVELO PABON
Unidad 4. sistema de ecuaciones lineales 2 x2 GONZALO REVELO PABONGONZALO REVELO PABON . GORETTI
 
Unidad 2 funcion lineal-cuadratica-GONZALO REVELO PABON
Unidad 2 funcion lineal-cuadratica-GONZALO REVELO PABONUnidad 2 funcion lineal-cuadratica-GONZALO REVELO PABON
Unidad 2 funcion lineal-cuadratica-GONZALO REVELO PABONGONZALO REVELO PABON . GORETTI
 
Unidad9 medidas de tendencia central gonzalo revelo pabon
Unidad9 medidas de tendencia central gonzalo revelo pabonUnidad9 medidas de tendencia central gonzalo revelo pabon
Unidad9 medidas de tendencia central gonzalo revelo pabonGONZALO REVELO PABON . GORETTI
 

Más de GONZALO REVELO PABON . GORETTI (20)

UNIDAD 5 ECUACION DE PRIMER GRADO -GONZALO REVELO PABON--GORETTI
UNIDAD 5 ECUACION DE PRIMER GRADO -GONZALO REVELO PABON--GORETTIUNIDAD 5 ECUACION DE PRIMER GRADO -GONZALO REVELO PABON--GORETTI
UNIDAD 5 ECUACION DE PRIMER GRADO -GONZALO REVELO PABON--GORETTI
 
Unidad 0 geometria plana-GONZALO REVELO PABON-GORETTI
Unidad 0  geometria plana-GONZALO REVELO PABON-GORETTIUnidad 0  geometria plana-GONZALO REVELO PABON-GORETTI
Unidad 0 geometria plana-GONZALO REVELO PABON-GORETTI
 
FACTORIZACION-GONZALO REVELO PABON-GORETTI
FACTORIZACION-GONZALO REVELO PABON-GORETTIFACTORIZACION-GONZALO REVELO PABON-GORETTI
FACTORIZACION-GONZALO REVELO PABON-GORETTI
 
Unidad 3 productos notables; GONZALO REVELO PABON-GORETTI
Unidad 3 productos notables; GONZALO REVELO PABON-GORETTIUnidad 3 productos notables; GONZALO REVELO PABON-GORETTI
Unidad 3 productos notables; GONZALO REVELO PABON-GORETTI
 
Unidad 3 MEDIDAS DE DISPERSION - GONZALO REVELO PABON
Unidad 3 MEDIDAS DE DISPERSION - GONZALO REVELO PABON Unidad 3 MEDIDAS DE DISPERSION - GONZALO REVELO PABON
Unidad 3 MEDIDAS DE DISPERSION - GONZALO REVELO PABON
 
CONSTRUCCION DE UNA UNIDAD DIDACTICA O PIA GONZALO REVELO PABON
CONSTRUCCION DE UNA UNIDAD DIDACTICA O PIA  GONZALO REVELO PABONCONSTRUCCION DE UNA UNIDAD DIDACTICA O PIA  GONZALO REVELO PABON
CONSTRUCCION DE UNA UNIDAD DIDACTICA O PIA GONZALO REVELO PABON
 
Unida 9. funcion logaritmica - GONZALO REVELO PABON
Unida 9. funcion  logaritmica - GONZALO REVELO PABONUnida 9. funcion  logaritmica - GONZALO REVELO PABON
Unida 9. funcion logaritmica - GONZALO REVELO PABON
 
Unidad 10. - GEOMETRIA PLANA-GONZALO REVELO PABON
Unidad 10. - GEOMETRIA PLANA-GONZALO REVELO PABONUnidad 10. - GEOMETRIA PLANA-GONZALO REVELO PABON
Unidad 10. - GEOMETRIA PLANA-GONZALO REVELO PABON
 
Unidad 9. interes compuesto-GONZALO REVELO PABON
Unidad 9. interes compuesto-GONZALO REVELO PABONUnidad 9. interes compuesto-GONZALO REVELO PABON
Unidad 9. interes compuesto-GONZALO REVELO PABON
 
Unidad 8. interes simple-GONZALO REVELO PABON
Unidad 8. interes simple-GONZALO REVELO PABONUnidad 8. interes simple-GONZALO REVELO PABON
Unidad 8. interes simple-GONZALO REVELO PABON
 
Unidad 7. progresion geometrica- GONZALO REVELO PABON
Unidad 7. progresion geometrica- GONZALO REVELO PABONUnidad 7. progresion geometrica- GONZALO REVELO PABON
Unidad 7. progresion geometrica- GONZALO REVELO PABON
 
Unidad 6. progresion aritmetica-GONZALO REVELO PABON
Unidad 6. progresion aritmetica-GONZALO REVELO PABONUnidad 6. progresion aritmetica-GONZALO REVELO PABON
Unidad 6. progresion aritmetica-GONZALO REVELO PABON
 
Unidad 5. numeros complejos - GONZALO REVELO PABON
Unidad 5. numeros complejos - GONZALO REVELO PABONUnidad 5. numeros complejos - GONZALO REVELO PABON
Unidad 5. numeros complejos - GONZALO REVELO PABON
 
Unidad 1 valor absoluto-GONZALO REVELO PABON
Unidad 1 valor absoluto-GONZALO REVELO PABON Unidad 1 valor absoluto-GONZALO REVELO PABON
Unidad 1 valor absoluto-GONZALO REVELO PABON
 
Unidad 4. sistema de ecuaciones lineales 2 x2 GONZALO REVELO PABON
Unidad 4. sistema de ecuaciones lineales 2 x2 GONZALO REVELO PABONUnidad 4. sistema de ecuaciones lineales 2 x2 GONZALO REVELO PABON
Unidad 4. sistema de ecuaciones lineales 2 x2 GONZALO REVELO PABON
 
Unidad 2 funcion lineal-cuadratica-GONZALO REVELO PABON
Unidad 2 funcion lineal-cuadratica-GONZALO REVELO PABONUnidad 2 funcion lineal-cuadratica-GONZALO REVELO PABON
Unidad 2 funcion lineal-cuadratica-GONZALO REVELO PABON
 
Unidad 1 valor absoluto-gonzalo revelo pabon
Unidad 1 valor absoluto-gonzalo revelo pabonUnidad 1 valor absoluto-gonzalo revelo pabon
Unidad 1 valor absoluto-gonzalo revelo pabon
 
Funcion cuadratica gonzalo revelo pabon
Funcion cuadratica  gonzalo revelo pabonFuncion cuadratica  gonzalo revelo pabon
Funcion cuadratica gonzalo revelo pabon
 
Unidad10 medidas de dispercion gonzalo revelo pabon
Unidad10 medidas de dispercion gonzalo revelo pabonUnidad10 medidas de dispercion gonzalo revelo pabon
Unidad10 medidas de dispercion gonzalo revelo pabon
 
Unidad9 medidas de tendencia central gonzalo revelo pabon
Unidad9 medidas de tendencia central gonzalo revelo pabonUnidad9 medidas de tendencia central gonzalo revelo pabon
Unidad9 medidas de tendencia central gonzalo revelo pabon
 

Último

cuadernillo de lectoescritura para niños de básica
cuadernillo de lectoescritura para niños de básicacuadernillo de lectoescritura para niños de básica
cuadernillo de lectoescritura para niños de básicaGianninaValeskaContr
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docxAgustinaNuez21
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 

Último (20)

cuadernillo de lectoescritura para niños de básica
cuadernillo de lectoescritura para niños de básicacuadernillo de lectoescritura para niños de básica
cuadernillo de lectoescritura para niños de básica
 
CIENCIAS NATURALES 4 TO ambientes .docx
CIENCIAS NATURALES 4 TO  ambientes .docxCIENCIAS NATURALES 4 TO  ambientes .docx
CIENCIAS NATURALES 4 TO ambientes .docx
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
Earth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversaryEarth Day Everyday 2024 54th anniversary
Earth Day Everyday 2024 54th anniversary
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 

Igualdades y funciones trigonométricas

  • 1. Luis Gonzalo Revelo Pabón 57 Dpto. de Matemáticas - Goretti LA IGUALDAD: son expresiones numéricas o algebraicas que se encuentran en el primero y segundo miembro de una igualdad, separadas por el signo de igualdad (=). Donde la igualdad puede ser falsa o verdadera. La igualdad es numérica si solo tiene números y la igualdad es algebraica (o literal) si tiene números y letras. Por ejemplo, son Igualdades Numéricas y Algebraicas 1. 3+2 = 5 Es una expresión numérica VERDADERA. 2 2 2 2. 4 -3 =1 Es una expresión numérica FALSA 2 2 2 3. (a+b) =a +2ab+b Es expresión algebraica VERDADERA, para cualquier valor numérico, que tome las variables a y b. 4. Es expresión algebraica VERDADERA, solamente se cumple para x =21 y para to- dos los valores que tome x diferentes a 21, la expresión algebraica es FALSA. Por tanto hay dos tipos de igualdades a saber: La Identidad algebraica y La Ecuación algebraica. LA IDENTIDAD ALGEBRAICA: Es una igualdad que se cumple para todos los valores que tome la(s) variable(s). Ejemplo 1: La igualdad algebraica es una identidad, ya que es verdadera para todos los valores que tome x. Ejemplo 2: La igualdad algebraica es una identidad, ya que es verdadera para todos los valores que tome x, y. Ejemplo 3: La igualdad algebraica es una identidad, ya que es verdadera para todos los valores que tome x, y. LA ECUACION ALGEBRAICA: Es una igualdad que se cumple solamente para algunos valores que tome la(s) variable(s). Ejemplo 1: La igualdad algebraica 2x = 8 es una ecuación, ya que solamente es válida para x = 4 Ejemplo 2: La igualdad algebraica 4x – 3 = 2x +1 es una ecuación ya que solamente se cumple para x = 2 Ejemplo 3: La igualdad algebraica 4 = 2x(x – 1), es una ecuación, ya que se cumple solamente cuando la variable x toma los valores de x = 2 y x = – 1 IDENTIDAD TRIGONOMETRICA Una identidad trigonométrica es una igualdad entre dos expresiones que contienen funciones trigonomé- tricas y es válida o verdadera para todos los valores permisibles que tome o se le asigne a la variable angular. Ejemplo 1: La igualdad es una Identidad trigonométrica, ya que se cumple para todos los valores que tome el ángulo A. Ejemplo 2: La igualdad ⁄ , es una identidad trigonométrica, ya que es verdadera para todos los valores que tome el ángulo A. Ejemplo 3: La igualdad ⁄ , es una identidad trigonométrica, ya que es verdadera para to- dos los valores que tome el ángulo A. Existen tres tipos de identidades llamadas Identidades fundamentales a saber: Identidades trigonométri- cas por Cociente, Identidades trigonométricas Reciprocas e Identidades trigonométricas Pitagóricas. RAZONES TRIGONOMETRICAS ⁄ ⁄ ⁄ ⁄ ⁄ ⁄
  • 2. Luis Gonzalo Revelo Pabón 58 Dpto. de Matemáticas - Goretti IDENTIDADES TRIGONOMETRICAS POR COCIENTE: Denominamos así a las siguientes identidades porque cada una de ellas representa la divicion o cociente entre dos razones trigonometricas. 1. Tang A = 2. Cotag A = IDENTIDADES TRIGONOMÉTRICAS RECIPROCAS Las siguientes identidades se cumplen o son verdaderas para cualquier valor que se le asigne al ángulo de la función trigonométrica, con la única excepción de que el denominador no debe ser cero. Las siguien- tes expresiones se denominan identidades recíprocas: 1. Sen A = 4. Cotag A = 2. Cos A = 5. Sect A = 3. Tang A = 6. Cosec A = Demostración: 1.- Por definición de razón trigonométrica del Sen A, es igual a: Sen A = El reciproco o inverso de Sen A, será igual a: = Cosec A De igual manera se efectúa, para demostrar a las demás identidades trigonométricas reciprocas. IDENTIDADES TRIGONOMÉTRICAS PITAGORICAS Se denominan identidades Pitagóricas, porque son el resultado de la aplicación del teorema de Pitagóri- cas con las razones trigonométricas. 1. 2. 3. Demostración: De acuerdo al teorema de Pitágoras se tiene que: Al dividir cada uno de los términos de la ecuación entre Se obtiene que: ( ) ( )
  • 3. Luis Gonzalo Revelo Pabón 59 Dpto. de Matemáticas - Goretti Pero: Al remplazar en la ecuación anterior se obtiene que: ……..(1) Ahora, al dividir cada uno de los términos de la ecuación pitagórica (1), entre se obtiene que: De igual manera al dividir cada uno de los términos de la ecuación pitagórica (1), entre se obtiene que: EJERCICIOS CON LAS IDENTIDADES TRIGONOMETRICAS Con las identidades trigonométricas fundamentales se puede realizar las siguientes tipos de ejercicios: 1. Tipo Simplificación. 2. Tipo Demostración. 1.- TIPO SIMPLIFICACION: En este tipo de ejercicios se busca reducir hasta la más mínima expresión, a la expresión trigonométrica que se haya planteado. Para la simplificación o reducción de la expresión trigonométrica que se haya plantado o dado, esta sim- plificación se la obtiene mediante la ayuda de las identidades trigonométricas fundamentales (Identidades trigonométricas por cociente, inversas y Pitagóricas) y con la realización de factorizaciones, como de la elaboración de las operaciones que se encuentran en la expresión. Ejemplos: Efectuar las operaciones indicadas, en cada de las siguientes expresiones: 1. 2. 3. 4. 5. 6. Solución 1. = 2. = 3. = . 4. 5. 6. Ejemplos: Factorizar las siguientes expresiones 1. 2. 3. 4. 5. Solución: 1. 2. 3. 4. 5.
  • 4. Luis Gonzalo Revelo Pabón 60 Dpto. de Matemáticas - Goretti Ejemplos: Simplificar cada una de las siguientes expresiones, hasta la más mínima expresión: 1. 2. 3. 4. 5. 6. 7. + Solución: 1. ⁄ 2. ⁄ ⁄ ⁄ 3. = ⁄ 4. ⁄ 5. 6. ⁄ ⁄ 7. + = TALLER Simplificar cada una de las siguientes expresiones, hasta la más mínima expresión: 1. 2. 3. 4. 5. 6. 7. 8. 9. * + 10. 2.- TIPO DEMOSTRACION. Para demostrar (verificar) si una Identidad Trigonométrica es verdadera, se elige a uno cualquiera de los dos miembros de la igualdad y por medio de operaciones algebraicas y de la aplicación en cada paso que se efectué de las Identidades inversas, Identidades por cociente como de las Identidades pitagóricas al miembro que se haya elegido, hasta llegar a demostrar que el miembro elegido es igual al otro miembro de la igualdad.
  • 5. Luis Gonzalo Revelo Pabón 61 Dpto. de Matemáticas - Goretti En general, se inicia con el miembro de la igualdad más complicado. Para tener éxito en la demostración o verificación de la Identidad Trigonométrica se requiere tener:  Una completa familiaridad con la Identidades fundamentales  Una completa familiaridad con los procedimientos de factorización, y operaciones con fracciona- rios, etc.  Practicar. Ejemplos: Demostrar las siguientes Identidades. 1. 2. 3. 4. 5. Solución: 1. Para demostrar esta identidad elegimos el segundo miembro de la igualdad. Así: 2. Para verificar esta identidad elegimos el segundo miembro de la igualdad. Así: = 3. Para demostrar esta identidad elegimos el segundo miembro de la igualdad. Así: 4.
  • 6. Luis Gonzalo Revelo Pabón 62 Dpto. de Matemáticas - Goretti Para demostrar esta identidad elegimos el primer miembro de la igualdad. Así: Dividimos cada termino entre Cos A 5. Para demostrar esta identidad elegimos el primer miembro de la igualdad. Así: TALLER Demostrar las siguientes Identidades. 1. 2. 3. ⁄ 4. 5. 6. 7. 8.
  • 7. Luis Gonzalo Revelo Pabón 63 Dpto. de Matemáticas - Goretti 9. 1 10. 11. 12. 13. LA ECUACION TRIGONOMETRICA: Es una igualdad que contiene funciones trigonométricas y es ver- dadera solamente para algunos valores que tome la variable angular. Resolver una ecuación trigonométrica, es determinar los valores del ángulo desconocido de una función trigonométrica. ECUACION TRIGONOMETRICA DE PRIMER GRADO Y SEGUNDO GRADO. El método para resolver una ecuación trigonométrica con una incógnita de segundo grado consiste en reducirla a una ecuación algebraica, tomando a la funci ón trigonométrica como una incógnita auxiliar. Luego se efectúa los siguientes pasos: A) Se elige como incógnita a una letra cualquiera del abecedario, a la función trigonométrica cuyo ángulo se desea encontrar. Donde cada una de las raíces aceptadas, tiene una ecuación trigonométrica de las siguientes formas: B) Se remplaza en la ecuación donde se encuentra la función trigonométrica por la letra elegida C) Por medio de los procedimientos ordinarios del algebra se resuelve la ecuación algebraica, con relación a la incógnita auxiliar y se analizan las raíces teniendo en cuenta las condiciones de la magnitud a las cuales está sujeta la función trigonométrica. D) En este estudio únicamente se ofrecerán soluciones particulares que oscilen entre 0º grados y 360º grados. (Si se buscan todas las soluciones se tiene en cuenta (180º ) o (360º ), de cada resultado obtenido dependiendo del cuadrante donde se encuentre el ángulo y el signo que le corresponde a función trigonométrica en cada uno de los cuadrantes. Ahora sí el ángulo es negativo para convertirlo en un ángulo positivo aplicamos la expresión 360º+ (-Angulo negativo)) Ejemplos: Determinar los valores del ángulo x entre 0º y 360º que satisfacen cada una de las siguien- tes ecuaciones: 1. 2. 3. 4. √ 5. Solución: 1. . . La función seno es positiva en el primero y segundo cuadrante, por lo tanto el ángulo del segundo cua- drante es igual a 180º- 30º = 150º. Respuesta: 30º y 150º 2. . . La función coseno es positiva en el primero y cuarto cuadrante, por lo tanto el ángulo en cuarto cuadrante es igual a 360º - 0º = 360º. Respuesta 0º y 360º 3. . .
  • 8. Luis Gonzalo Revelo Pabón 64 Dpto. de Matemáticas - Goretti Como el ángulo negativo lo convertimos en un ángulo positivo mediante la ecuación: 360º + (-n), rempla- zamos para obtener: 360º+ (-13,562151º) = 346,437849º Ahora: La función seno es negativa en el tercero y cuarto cuadrante, por lo tanto el ángulo del tercer cuadrante es igual a 180º+ 13,562151º = 193,562151º. Respuesta: 346,437849º y 193,562151º 4. √ . √ . . El ángulo negativo lo convertimos a un ángulo positivo mediante la expresión: 360º+(-n), remplazamos para obtener: 360º - 79,97501214º = 280,0249879º Ahora, la función tangente es negativa en el segundo y cuarto cuadrante, por lo tanto el ángulo en el se- gundo cuadrante es igual a 180º - 79,97501214º = 100,0249879º. Respuesta: 280,0249879º y 100,0249879º. 5. . . La función coseno es negativa en el segundo y tercer cuadrante, por lo tanto el ángulo del tercer cuadran- te es igual a 180º+ 60º = 240º. Respuesta: 120º y 240º Ejemplos: Resuelva las siguientes ecuaciones trigonométricas. 1. 2. 3. 4. 5. 6. Solución: 1. . ⁄ . . √ .. . a) . . . Convertimos a un ángulo positivo. . Ahora la función seno sus valores son negativos en tercero y cuarto cuadrante. Por lo tanto en el cuarto cuadrante el ángulo que satisface a esta ecuación es: b) . Esta ecuación No tiene solución, porque el valor máximo de la función seno es Respuesta: X=321,8275º y 218,1724º 2. .
  • 9. Luis Gonzalo Revelo Pabón 65 Dpto. de Matemáticas - Goretti . . √ .. . a) . . . Convertimos a un ángulo positivo. . b) . .. Respuesta: A= 30º y 270º 3. . . . √ . . a) . . . . b) . .. Respuesta: X= 0º y 60º 4. . . . . . . √ . . a) . . .
  • 10. Luis Gonzalo Revelo Pabón 66 Dpto. de Matemáticas - Goretti b) . Esta ecuación No tiene solución, porque el valor máximo de la función seno es : Respuesta: X=30º 5. . 3( ) +5 . 3( ) +5 . . . . . √ . = a) ⁄ . (3) . (3) Esta ecuación no tiene solución porque, porque el valor máximo que toma la función coseno es . b) ⁄ . (0,5) . (0,5) . . Ahora la función coseno tiene un valor positivo, en el primero y cuarto cuadrante. Por lo tanto el ángulo que satisface esta ecuación en el cuarto cuadrante es igual a 360º , remplazando se obtiene: 360º-60º= 300º Respuesta: Las soluciones de esta ecuación trigonométrica son: 60º y 300º 6. . . √ . = a) ⁄ . (2) . (2) Esta ecuación no tiene solución porque, porque el valor máximo que toma la función coseno es . b) ⁄ . (1) . (1)
  • 11. Luis Gonzalo Revelo Pabón 67 Dpto. de Matemáticas - Goretti . . y 360º Respuesta: Las soluciones de esta ecuación trigonométrica son: 0º y 360º TALLER. Resuelva las siguientes ecuaciones trigonométricas. 1. Rta: 60º y 300º 2. Rta: 210º y 330º 3. Rta: 45º y 225º 4. √ ⁄ Rta: 65º 5. . Rta: 35º 6. Rta: 17º 7. Rta:0º, 90º, 360º 8. Rta: 90º 9. Rta: 45º, 225º 10. √ Rta: 60º, 120º 11. Rta: 90º,210º,330º 12. Rta: 30º, 150º, 210º, 330º 13. Rta:30º, 150º 14. Rta: 210º, 270º, 330º 15. Rta: 0º, 270º 16. Rta: 90º, 180º, 270º 17. Rta: 114,46º y 245,54º