Aumente os seus conhecimentos sobre a
tecnologia GPRS.
Saiba mais sobre o GPRS:
• redes
• protocolos
• interface aérea
• m...
2
Página
Necessidades da comunicação de dados ...............................................................................
3
Em resposta à demanda dos clientes pelo acesso wireless à Internet - e
como um degrau às redes 3G - muitas operadoras GS...
4
Seção 1: Necessidades da comunicação de dados
Antes de examinar a tecnologia GPRS em detalhes, vamos relembrar
alguns te...
5
Seção 2: A rede GPRS
O General Packet Radio Service (GPRS) oferece aos assinantes do GSM
o acesso a aplicações de comuni...
6
A arquitetura da rede GPRS
A tecnologia GPRS traz muitas mudanças à rede GSM existente. A
maior parte destas mudanças re...
7
Estados de operação dos telefones móveis
GPRS
Os telefones móveis passam por diferentes estados de comunicação.
Por exem...
8
Figura 2. Conexão ao GPRS
Procedimento de conexão (attach) ao GPRS
A conexão ao GPRS é um processo da gerência de mobili...
9
Figura 3. Ativação do contexto de PDP
Ativação do contexto de PDP
Um contexto de PDP ativa uma sessão de comunicação de ...
10
Seção 3: Camadas de protocolo do GPRS
Figura 4. Plano de dados e sinalização do GPRS
O plano de transmissão de dados e ...
11
O BSSGP (base station system GPRS protocol) roteia informações
entre o SGSN e o BSS. Este protocolo transporta informaç...
12
Figura 5. Transferência de pacotes de dados no GPRS
A N-PDU atravessa o GTP, que inclui um cabeçalho de GTP, que
difere...
13
Transmissão no SGSN
No SGSN, os cabeçalhos são removidos e a N-PDU é enviada ao
SNDCP. Esta camada de protocolo fará a ...
14
Seção 4: Identidades do GPRS
Antes de aprofundar a discussão sobre as operações do GPRS e a
interface aérea, definiremo...
15
TBF (fluxo de blocos temporário)
A conexão física entre a MS e o BSS, criada durante o enlace da
transferência de dados...
16
Seção 5: Interface aérea GPRS
Voltemos agora a nossa atenção para a interface aérea GPRS.
É importante observar que o G...
17
Figura 8. Canais lógicos do GPRS
Canais lógicos do GPRS
Canais lógicos são funções pré-definidas baseadas nos quadros d...
18
Figura 9. Mapeamento dos canais lógicos em canais físicos
Mapeamento de canais lógicos em canais
físicos
Nós definimos ...
19
Coordenação das funções GSM e GPRS
Há determinadas funções comuns ao GSM e GPRS. Entre estas estão o
paging, atualizaçõ...
20
Configurações multislot
Uma configuração multislot é formada por vários canais comutados por
circuitos ou pacotes junto...
21
Controle de potência de RF
O controle de potência de RF é usado para minimizar a potência de
transmissão exigida pela u...
22
Figura 11. Avanço de timing no modo GPRS
Avanço de timing no modo GPRS
A principal diferença entre a transmissão por co...
23
Figura 12. Esquemas de codificação de dados em blocos de rádio
Codificação de dados nos blocos de rádio
Após ter defini...
24
Seção 6: Operações de transferência de pacotes de dados
Nesta seção final, examinamos alguns dos procedimentos associad...
25
Figura 14. Transferência de dados do uplink - alocação dinâmica de blocos de rádio
Alocação dinâmica de blocos de rádio...
26
Figura 15. Transferência de dados no uplink - alocação fixa
Alocação fixa de blocos de rádio
Além da alocação dinâmica ...
27
Figura 16. Transferência de dados no uplink
Transferência de blocos de dados do RLC
Os blocos de dados do RLC são trans...
28
Figura 17. Transferência de dados no downlink
Transferência de pacotes de dados no downlink
Agora, vejamos como funcion...
29
Resseleção de células
O último processo de transferência de dados que iremos considerar é a
resseleção de células. Este...
Suporte, serviços e assistência de
teste e medição da Agilent
Technologies
O objetivo da Agilent Technologies é maximizar
...
Próximos SlideShares
Carregando em…5
×

Gprs agilent

180 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
180
No SlideShare
0
A partir de incorporações
0
Número de incorporações
6
Ações
Compartilhamentos
0
Downloads
1
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Gprs agilent

  1. 1. Aumente os seus conhecimentos sobre a tecnologia GPRS. Saiba mais sobre o GPRS: • redes • protocolos • interface aérea • métodos de transferência de pacotes de dados Agilent Conheça o General Packet Radio Service (GPRS) Nota de Aplicação 1377
  2. 2. 2 Página Necessidades da comunicação de dados .................................................................................... 4 A rede GPRS .................................................................................................................................. 5 Camadas de protocolo do GPRS ................................................................................................. 10 Identidades do GPRS...................................................................................................................14 Interface aérea GPRS..................................................................................................................16 Operações de transferência de pacotes de dados....................................................................24 Índice
  3. 3. 3 Em resposta à demanda dos clientes pelo acesso wireless à Internet - e como um degrau às redes 3G - muitas operadoras GSM estão implementando o General Packet Radio Service (GPRS). Esta tecnologia aumenta as taxas de dados das redes GSM existentes, permitindo o transporte de dados por pacotes. Os novos aparelhos telefônicos GPRS serão capazes de transferir dados a taxas muito mais altas que os 9,6 ou 14,4 kbps disponíveis atualmente aos usuários de telefones móveis. Em circunstâncias ideais, o GPRS pode operar a taxas de até 171,2 kbps, ultrapassando as taxas de acesso do ISDN. Entretanto, uma taxa de dados mais realista para as primeiras implementações de rede provavelmente estará em torno de 40 kbps, com o uso de um timeslot para o uplink e três para o downlink. Diferentemente da tecnologia 2G de comutação de circuitos, o GPRS é um serviço “sempre ativo”. Ele permitirá que as operadoras GPRS forneçam acesso à Internet em alta velocidade a um custo razoável, tarifando os usuários dos telefones móveis pela quantidade de dados que eles transferem, e não pelo tempo em que ficam conectados à rede. Este trabalho mostra em detalhes os novos protocolos, procedimentos e outras mudanças tecnológicas que o GPRS trará às redes GSM. Introdução
  4. 4. 4 Seção 1: Necessidades da comunicação de dados Antes de examinar a tecnologia GPRS em detalhes, vamos relembrar alguns termos básicos da comunicação de dados. As aplicações de comunicação de dados geralmente são divididas em duas categorias: • As aplicações em tempo real envolvem pequenas transações de dados como o envio ou recebimento de um e-mail rápido, executar uma transação financeira, receber notícias ou resultados esportivos pela web ou bater um papo on-line. • As aplicações de acesso de dados são de maior volume, e envolvem o envio e recepção de quantidades maiores de dados. Alguns exemplos são o download de páginas web e arquivos da Internet ou a transferência de arquivos grandes a outros usuários. Há duas técnicas para o transporte de dados pelas redes de comunicações: A comutação de circuitos é um modo no qual uma conexão (ou circuito) é estabelecida do ponto de origem da transferência de dados ao destino. Recursos da rede são dedicados por toda a duração da chamada, até que o usuário interrompa a conexão. Usando estes recursos, os dados podem ser transmitidos ou recebidos continuamente ou em bursts, dependendo da aplicação. Como os recursos permanecem dedicados durante toda a chamada de dados, o número de assinantes que a rede pode atender é limitado. A comutação de pacotes é um modo no qual os recursos somente são atribuídos a um usuário quando for necessário enviar ou receber dados. Os dados são enviados em pacotes, que são roteados pela rede juntamente com o tráfego de outros usuários. Esta técnica permite que vários usuários compartilhem os mesmos recursos, aumentando assim a capacidade da rede e permitindo uma gerência razoavelmente eficiente dos recursos. Entretanto, esta técnica impõe algumas limitações com relação ao throughput de dados. A experiência mostra que as aplicações de comunicação de dados não requerem a transferência contínua dos dados. Os usuários podem precisar ficar conectados a uma rede de comunicação de dados (como uma LAN, WAN, a Internet, ou uma intranet corporativa), mas isto não significa que eles estarão enviando e recebendo dados o tempo todo. Além disso, as necessidades de transferência de dados geralmente não são simétricas. Na maior parte dos casos, os usuários enviam mensagens curtas, mas recebem downloads grandes. Em um dado momento qualquer, a maior parte da transferência de dados é feita em uma direção.
  5. 5. 5 Seção 2: A rede GPRS O General Packet Radio Service (GPRS) oferece aos assinantes do GSM o acesso a aplicações de comunicações de dados como e-mail, redes corporativas e a Internet por seus telefones móveis. O serviço GPRS usa a rede GSM existente, incluindo novos equipamentos de rede de comutação de pacotes. Veja a figura 1. As redes GSM existentes usam a tecnologia de comutação de circuitos para transferir informações (voz ou dados) entre usuários. Entretanto, o GPRS usa a comutação de pacotes, o que significa que não há circuitos dedicados atribuídos aos telefones móveis GPRS. Um canal físico é estabelecido dinamicamente, somente enquanto os dados estiverem sendo transferidos. Assim que os dados tiverem sido enviados, o recurso (um timeslot na interface aérea) pode ser realocado a outros usuários, para tornar mais eficiente o uso da rede. Quando os dados comutados por pacotes deixam a rede GPRS/GSM, eles são transferidos a redes TCP-IP como a Internet ou X.25. Assim, o GPRS inclui novos procedimentos de transmissão e sinalização, assim como novos protocolos para a interoperação com o mundo IP e outras redes de pacotes padrão. Os telefones móveis atuais não funcionarão com a tecnologia GPRS, e desta forma a indústria está trabalhando em uma nova geração de unidades móveis que podem operar com o GSM e a comunicação por comutação de pacotes. No futuro, os telefones GPRS poderão ser integrados a dispositivos como computadores laptop ou assistentes pessoais digitais. O GPRS também pode dar suporte ao serviço de mensagens curtas (SMS). Para operar com taxas de dados altas, o GPRS emprega novos esquemas de codificação de erro e múltiplos timeslots nas interfaces aéreas, de forma similar ao HSCSD (dados de comutação de circuitos em alta velocidade). Teoricamente, podemos ter uma taxa de dados máxima de 171,2 kbps, usando oito timeslots. Entretanto, hoje isto parece improvável, devido a desafios no projeto de telefones móveis e à qualidade inadequada das interfaces aéreas. Como a comunicação por comutação de pacotes permite a atribuição não contínua de recursos a um usuário, a tarifação GPRS não será baseada no tempo da conexão, e sim na utilização de recursos. Figura 1. Arquitetura da rede GPRS
  6. 6. 6 A arquitetura da rede GPRS A tecnologia GPRS traz muitas mudanças à rede GSM existente. A maior parte destas mudanças refere-se à inclusão de novos blocos, e não à modificação dos recursos existentes. Uma visão simplificada desta nova rede híbrida mostra os elementos introduzidos pelo GPRS. O gateway GPRS support node (GGSN) é similar à central de comutação e controle gateway (GMSC) do GSM e coloca um gateway entre a rede GPRS e a rede pública de dados em pacotes (PDN) ou outras redes GPRS. O GGSN fornece funções de gerência de autenticação e localização, conecta-se ao registro de localização de unidade móvel local (HLR) por meio da interface Gc e conta o número de pacotes transmitidos, para tarifar corretamente o assinante. O serving GPRS support node (SGSN), como a central de comutação e controle GSM e o registro de localização de visitante (MSC/VLR), controla a conexão entre a rede e a estação móvel (MS). O SGSN fornece a gerência da sessão e funções de gerência de mobilidade GPRS, como handovers e paging, sendo conectado ao HLR pela interface Gr e à MSC/VLR pela interface Gs. Além disso, também conta o número de pacotes roteados. Entre as funções da unidade de controle de pacotes (PCU) estão a conversão dos dados em pacotes em um formato que possa ser transferido pela interface aérea, a gerência dos recursos de rádio e a implementação das medições de qualidade de serviço (QoS). Os enlaces de sinalização entre os nós GPRS e os blocos GSM serão interfaces SS7 MAP. A sinalização entre os nós GPRS é definida pelas especificações GPRS. Entre as novas interfaces físicas estão a interface Gb, que conecta o SGSN à PCU e que normalmente localizada no subsistema da estação radiobase (BSS); a interface Gn, que conecta o GGSN e o SGSN; e as interfaces Gc, Gr e Gs, que transportam protocolos baseados na SS7.
  7. 7. 7 Estados de operação dos telefones móveis GPRS Os telefones móveis passam por diferentes estados de comunicação. Por exemplo, quando estiver em camp-on em uma rede, um telefone GSM entra em estado ocioso, que usa muito poucos recursos da rede. Quando o usuário faz uma solicitação de chamada ou recebe uma chamada, entretanto, o telefone entra no estado dedicado, no qual tem recursos atribuídos continuamente até que a conexão seja encerrada. Os telefones móveis GPRS também terão estados definidos, descritos abaixo. GPRS ocioso (idle) é o estado no qual o telefone móvel está em camp-on na rede GSM. O telefone recebe paging por comutação de circuito e atua como um telefone GSM. Embora não esteja interagindo com a rede GPRS neste estado, ele ainda possui as funções GPRS. GPRS pronto (ready) é o estado atingido quando a unidade móvel GPRS conecta-se à rede. Neste estado, o telefone móvel pode ativar um contexto de protocolo de dados em pacotes (PDP), que permite que o telefone estabeleça uma sessão de transferência de pacotes com redes de dados externas para transmitir e receber pacotes de dados. Quando o contexto de PDP é ativado, os blocos de recursos são atribuídos à sessão até que a transferência de dados cesse por um período específico e o telefone móvel passe para o estado standby. GPRS standby é um estado no qual a unidade móvel está conectada à rede GPRS, mas não há transmissão de dados. Se chegar um pacote de dados para a unidade móvel, a rede fará um paging à procura da unidade móvel, que por sua vez ativará a sessão de contexto de PDP para trazer a unidade móvel de volta ao estado “pronto”. Classes de unidades móveis GPRS/GSM A ETSI define três classes diferentes de unidades móveis para a rede híbrida GPRS/GSM: Classe A (GSM/GPRS) As unidades móveis da Classe A podem ser conectadas às redes GPRS e GSM simultaneamente. Elas podem receber chamadas de voz/dados/ SMS do GSM e chamadas de dados do GPRS. Para que isto aconteça, estas unidades móveis devem monitorar as chamadas de entrada nas redes GSM e GPRS. As unidades móveis da Classe A podem também fazer e receber chamadas GPRS e GSM simultaneamente. Entre os requisitos de operação desta classe está a existência de um receptor adicional no telefone móvel para as medições das células vizinhas. Classe B (GSM/GPRS) Esta classe é similar à classe A, exceto pelo fato dos telefones móveis da Classe B não operarem com tráfego simultâneo. Se uma chamada GPRS estiver ON, o telefone não poderá receber chamadas GSM e vice-versa. Classe C (GSM ou GPRS) Esta classe de telefones móveis terá as funções GSM e GPRS, mas somente poderão se conectar a uma rede por vez. Assim, se o telefone estiver conectado à rede GPRS, ele terá de ser desconectado da rede GSM, não podendo fazer ou receber chamadas GSM. Da mesma forma, se estiver conectado à rede GSM, não poderá fazer ou receber chamadas GPRS. Atualmente, a maior parte dos fabricantes está montando telefones Classe B.
  8. 8. 8 Figura 2. Conexão ao GPRS Procedimento de conexão (attach) ao GPRS A conexão ao GPRS é um processo da gerência de mobilidade do GPRS (GMM) que sempre é iniciado pelo telefone móvel. Dependendo dos valores usados no telefone móvel, a conexão GPRS pode ser executada todas as vezes que o telefone for ligado ou ser iniciada manualmente pelo usuário. A solicitação de conexão ao GPRS é feita ao SGSN, em um processo transparente para o BSS. Em primeiro lugar, a unidade móvel informa ao SGSN a sua identidade IMSI (identidade internacional de assinante móvel) ou P-TMSI (identidade de assinante móvel de pacotes temporário). Em seguida, ela envia a identificação de sua área de roteamento anterior (RAI), classmark, CKSN e tipo de conexão desejada. Este último item indica ao SGSN se a unidade móvel desejafazer a conexão como um dispositivo GPRS, GSM ou ambos. O SGSN será conectado à unidade móvel e informará ao HLR se houve uma mudança na RAI. Se o tipo de conexão desejado for GPRS e GSM, o SGSN também atualizará a localização com o VLR, desde que haja uma interface Gs presente. Observe que a conexão GPRS não permite que o telefone móvel transmita e receba dados. Para que isto ocorra, a unidade móvel precisa ativar uma sessão de comunicação, usando o contexto de PDP.
  9. 9. 9 Figura 3. Ativação do contexto de PDP Ativação do contexto de PDP Um contexto de PDP ativa uma sessão de comunicação de pacotes com o SGSN. Durante o procedimento de ativação, o telefone móvel fornece um endereço IP estático ou solicita um endereço temporário à rede. Ele também especifica um nome de ponto de acesso (APN) com o qual quer se comunicar - por exemplo, um endereço Internet ou um provedor de serviço Internet. A unidade móvel solicita a qualidade de serviço (QoS) desejada e um identificador de ponto de acesso de serviço da rede (NSAPI). Como uma unidade móvel pode estabelecer múltiplas sessões de contexto de PDP para diferentes aplicações, o NSAPI é usado para identificar os pacotes de dados de uma aplicação específica. Após receber as informações da unidade móvel, o SGSN determina qual o GGSN que está conectado ao APN e redireciona a solicitação. O SGSN também fornece uma QoS negociada, com base nas informações da assinatura do usuário e na disponibilidade dos serviços. Se o telefone móvel tiver um endereço IP estático, o GGSN será conectado diretamente à unidade móvel no ponto de acesso desejado. Caso contrário, ele obterá um endereço IP temporário da APN. O GGSN também fornece alguns identificadores da transação para a comunicação de dados entre o GGSN e o SGSN. Assim que o procedimento de comunicação e ativação no GGSN tiver sido concluído corretamente, as informações apropriadas da transferência de dados serão enviadas à unidade móvel.
  10. 10. 10 Seção 3: Camadas de protocolo do GPRS Figura 4. Plano de dados e sinalização do GPRS O plano de transmissão de dados e sinalização do GPRS é formado por protocolos padrão como o IP e alguns protocolos novos, específicos do GPRS. A seguir, alguns protocolos de interface Gn: O GTP (GPRS tunneling protocol) recebe datagramas IP e pacotes X.25 de redes externas e faz a transferência destes pelos nós de suporte do GPRS. Como haverá diversas interfaces GGSN e SGSN, o GTP fornece a cada pacote um identificador de túnel (TID) que identifica o destino e a transação aos quais o pacote/datagrama pertence. As transações são identificadas com o uso de identificadores lógicos, além do IMSI. O TCP/UDP é formado pelo protocolo de controle de transmissão (TCP), usado para transferir PDUs (unidades de dados de protocolo) pela interface Gn com confiabilidade (acknowledgement e retransmissões). O protocolo de datagramas do usuário (UDP) é usado pela interface Gn para o transporte de GTP-PDUs de todas as informações e dados do usuário que não exijam confiabilidade. O IP (Internet Protocol) é usado para rotear dados de usuário e informações de sinalização pela interface Gn. O tamanho do datagrama IP será limitado à camada física - recursos de unidade de transmissão máxima (MTU). Um datagrama IP pode ser formada por até 65.535 octetos, mas se a MTU da camada física for menor que isto, será necessário fazer uma fragmentação. O nó de suporte gateway fonte (GGSN ou SGSN) precisa primeiro decidir o tamanho da MTU e depois executar a fragmentação. O endereçamento IP usado roteará os dados pela interface Gn, incluindo quaisquer GSNs intermediários (nós gateway de suporte) ao endereço GSN no destino final. A seguir, alguns protocolos de interface Gb: O SNDCP (sub network dependent convergence protocol) é usado entre o SGSN e o telefone móvel. Este protocolo converte as PDUs da camada de rede (N-PDUs) na interface Gn a um formato adequado à arquitetura da rede GPRS base. O SNDCP executa várias funções: • Multiplexação de N-PDUs de uma ou várias entidades da camada de rede em uma conexão LLC apropriada • Colocação das N-PDUs em buffer para o serviço reconhecido • Gerência de seqüência de entrega de cada NSAPI • Compactação e descompactação das informações do protocolo e dos dados do usuário • Segmentação e remontagem dos dados compactados até o comprimento máximo da LLC-PDU • Negociação dos parâmetros de controle (XID) entre as entidades do SDNCP. O protocolo LLC (logical link control) oferece um enlace lógico criptografado e altamente confiável entre o SGSN e o telefone móvel. O LLC usa os modos de transmissão de quadros com e sem acknowledgement, dependendo da qualidade de serviço negociada do usuário. Este protocolo também gerencia a retransmissão de quadros, utilização do buffer e o comprimento da informação com base na classe de atraso de QoS negociada.
  11. 11. 11 O BSSGP (base station system GPRS protocol) roteia informações entre o SGSN e o BSS. Este protocolo transporta informações de QoS, sem transportar nenhuma outra forma de correção de erro. A sua função básica é fornecer informações relacionadas ao rádio para o uso pelas funções de RLC (radio link control) e MAC (medium access control) na interface aérea. A camada LLC usa os serviços do BSSGP para a transferência de dados. A função de relay do BSS transfere quadros LLC entre a camada RLC/MAC e a camada BSSGP. O BSSGP envia informações às camadas dos serviços de rede para determinar o destino da transferência: • O BVCI (BSSGP virtual connection identifier) é enviado às camadas dos serviços de rede para informação de dados e sinalização de roteamento entre o devido par de entidades funcionais. Cada BVCL entre duas entidades iguais é único. • O LSP (link selection parameter) é usado em conjunto com o BVCI para auxiliar a selecionar o enlace físico para o processo de compartilhamento de carga. • O NSEI (network service entity identifier), usado no BSS e no SGSN, fornece as funções de gerência da rede necessárias para a operação da interface Gb. O NSEI, juntamente com o BVCI, identifica de forma exclusiva uma conexão virtual BSSGP. A camada NS (network service) usa o frame relay pela interface Gb e pode ser uma conexão ponto-a-ponto entre o SGSN e o BSS ou uma rede frame relay. A camada NS usa uma tabela look-up de DLCI (identificador de conexão de enlace de dados) para indicar o percurso do roteamento entre o SGSN e o BSS. O valor inicial do campo DLCI é obtido a partir do BVCI, NSEI e LSP fornecidos pela camada BSSGP. Este valor é alterado à medida que o quadro atravessa a rede frame relay, até atingir o seu destino final. Os protocolos abaixo são da interface Um: O RLC (radio link control) é responsável por várias funções: • Transferência de LLC-PDUs entre a camada LLC e a função MAC • Segmentação de LLC-PDUs em blocos de dados RLC e a remontagem dos blocos de dados RLC para a inserção destes em blocos de quadros TDMA • Segmentação e remontagem das mensagens de controle RLC/MAC em blocos de controle RLC/MAC • Correção de erro no sentido reverso para a transmissão seletiva dos blocos de dados RLC. A função de segmentação de RLCs é um processo no qual uma ou mais LLC-PDUs são divididas em blocos RLC menores. O conjunto de LLC- PDUs é conhecido como fluxo de blocos temporário (TBF), no qual são alocados os recursos de um ou mais canais de dados em pacotes (PDCH). O TBF é temporário, mantido somente pela duração da transferência de dados. Cada TBF recebe da rede uma identidade de fluxo temporário (TFI). Os blocos de dados do RLC são formados por um cabeçalho de RLC, uma unidade de dados de RLC e bits sobressalentes. O bloco de dados do RLC, juntamente com um cabeçalho MAC, pode ser codificado com o uso de um a quatro esquemas de codificação definidos. O esquema de codificação é crítico para a decisão do processo de segmentação. O MAC (medium access control) controla a sinalização de acesso na interface aérea, incluindo a gerência dos recursos compartilhados da transmissão (designação do bloco de rádio a vários usuários em um mesmo timeslot). O MAC realiza estas funções colocando um cabeçalho na frente do cabeçalho do RLC, nos blocos de dados RLC/MAC e de controle. O cabeçalho do MAC contém vários elementos, alguns dos quais são específicos da direção, sendo relativos ao downlink ou uplink. Os principais parâmetros do cabeçalho do MAC são: • Flag de status do uplink (USF), enviado em todos os blocos RLC/MAC do downlink, indica o proprietário ou o uso do próximo bloco de rádio do uplink no mesmo timeslot. • Período relativo de blocos reservados (RRBP), identifica um determinado bloco no uplink no qual o telefone móvel transmitirá informações de controle. • Tipo de payload (PT), o tipo de dados (bloco de controle ou bloco de dados) contido no restante do bloco RLC/MAC. • Valor de contagem regressiva (CV), enviado pela unidade móvel para permitir que a rede calcule o número de blocos de dados RLC restantes no TBF atual do uplink.
  12. 12. 12 Figura 5. Transferência de pacotes de dados no GPRS A N-PDU atravessa o GTP, que inclui um cabeçalho de GTP, que diferencia a N-PDU de uma mensagem GTP. Após o encapsulamento do cabeçalho de GTP, a N-PDU passa para a camada de protocolo UDP/TCP. Esta camada insere o seu próprio cabeçalho - UDP ou TCP, com base na classe de QoS - que contém os endereços das portas da fonte e destino, informações de roteamento e (no caso do TCP) controle de fluxo. (Veja B no diagrama.) Agora a N-PDU é enviada à camada IP, que adiciona os endereços do GSN da fonte e do destino final (SGSN neste caso). Dependendo do comprimento da N-PDU e da unidade máxima de comprimento da transmissão (MTU), pode ser necessário fragmentar a PDU. Finalmente, a N-PDU com todos os cabeçalhos incluídos é transportada pela camada física da interface Gn até o SGSN. Transmissão das unidades de dados em pacotes Após termos definido as diferentes camadas de protocolo GPRS, agora podemos ver como as unidades de dados em pacotes (PDUs) são transmitidas de uma extremidade da rede GPRS à outra. Vejamos o exemplo de um pacote destinado a um telefone móvel. Um e-mail curto é enviado de um computador em seu escritório (mostrado no canto superior direito do diagrama acima) ao telefone móvel GPRS de um amigo que está em um táxi (mostrado no canto inferior direito). Os dados devem ir da Internet ao GGSN, depois ao SGSN, ao BSS e, finalmente, à MS (neste caso, o telefone móvel GPRS). A camada de aplicação (isto é, o e-mail proveniente do computador) gera um datagrama IP e envia este datagrama pela rede de comunicação de dados externa (IP ou X.25) ao GGSN. Quando o datagrama IP chega ao GGSN, ele passa a ser uma N-PDU (unidade de dados em pacote da rede), sendo enviada a um determinado endereço IMSI ou IP. Observe que conforme os dados vão descendo pela pilha do protocolo GGSN, cabeçalhos são incluídos a cada camada. Embora muitos cabeçalhos sejam incluídos desta maneira, o diagrama mostra apenas alguns exemplos, para facilitar a visualização. Preste atenção em particular às letras de referência no diagrama (A - E). Os cabeçalhos subseqüentes são indicados pela inclusão de camadas retangulares aos dados originais da aplicação. Por exemplo, no ponto A do diagrama, um cabeçalho IP é incluído aos dados da aplicação na camada IP/X.25 na passagem dos dados do PC à rede IP.
  13. 13. 13 Transmissão no SGSN No SGSN, os cabeçalhos são removidos e a N-PDU é enviada ao SNDCP. Esta camada de protocolo fará a compactação (opcional) e a segmentação do pacote para atender aos requisitos de MTU de 1520 octetos para a transmissão pela camada de serviços de rede (NS) do frame relay na interface Gb. Em seguida, o SDNCP primeiro classificará a N-PDU como PDU SN-DATA orientada à conexão ou uma PDU SN-UNITDATA não relacionada a uma conexão. Finalmente, ele incluirá um cabeçalho SNDCP que contém informações de compressão e segmentação e enviará a PDU à camada LLC abaixo. (Veja C no diagrama da página 12.) A função básica da camada LLC, como discutido anteriormente, é fornecer uma conexão lógica altamente confiável entre o SGSN e o telefone móvel. A camada LLC aqui atua como as camadas LAPD e LAPDM das interfaces Abis e Um do GSM. Esta camada encapsula a PDU SN-DATA ou SN-UNITDATA em um quadro LLC, que tem o seu próprio cabeçalho. O quadro LLC contém a SN-PDU que agora pode ser denominado como bloco LLC. O cabeçalho do LLC inclui informações de controle (usadas na transferência de quadros no modo acknowledged), seqüência de verificação de quadros e os valores de SAPI. SAPI, neste caso, refere-se ao serviço associado ao quadro LLC para esta seção PDP. Os serviços para este quadro podem ser a gerência de mobilidade (MM) ou dados do usuário dos níveis 1 a 5 (níveis dos parâmetros de QoS como atraso, retransmissão e tamanho do buffer). Estes níveis de serviço são decididos no processo de negociação de QoS. (Veja D no diagrama da página 12.) A camada BSSGP sob a camada LLC agora fornece algumas informações de roteamento à camada NS para rotear o bloco LLC pela camada física do frame relay. O BSSGP também inclui um cabeçalho ao bloco LLC, que contém algumas informações essenciais às camadas RLC/MAC da interface aérea com relação à transmissão dos blocos, incluindo parâmetros como a prioridade, TLLI (identificador de enlace lógico temporário), etc. Transmissão no BSS Os dados são enviados pela conexão da camada física entre o SGSN e o BSS. Em seguida, o BSSGP no BSS envia todas estas informações ao controle do enlace de rádio (RLC). O trabalho mais importante da camada RLC é a segmentação dos blocos LLC em blocos RLC menores. Um grupo de blocos de LLC que foram segmentados em blocos menores é conhecido como um TBF (fluxo de blocos temporário). Cada TBF recebe recursos alocados na interface aérea em um ou mais canais de tráfego de dados em pacotes (PDTCH). Como mencionado anteriormente, o TBF é temporário, sendo mantido somente pela duração da transferência dos dados. O TBF recebe uma TFI (identidade de fluxo temporário) e a camada RLC inclui um cabeçalho aos blocos de dados que contêm a TFI, número de seqüência do bloco do RLC, indicação de último bloco, TLLI e outras informações. O cabeçalho do RLC também tem informações de direção (downlink/uplink). (Veja E no diagrama da página 12.) Uma determinação que deve ser feita é o “tamanho” das informações contidas nos blocos de dados do RLC (em outras palavras, o tamanho dos segmentos dos blocos LLC convertidos em blocos RLC). O tamanho dos segmentos do bloco de dados LLC dependerá do esquema de codificação usado na interface aérea. Há quatro esquemas de codificação definidos para o GPRS: CS1, CS2, CS3 e CS4, que contêm um máximo de 22, 32, 38 e 52 octetos de dados, respectivamente. A seleção do esquema de codificação depende da escolha entre o throughput desejado e a confiabilidade. Falaremos mais sobre estes esquemas de codificação mais tarde. Transmissão pela interface aérea Após a segmentação do RLC e as inserções de cabeçalho, os blocos do RLC são transmitidos pela interface aérea. É interessante observar que há mais de uma camada antes da interface de rádio física - o MAC (medium access control). Esta camada controla a sinalização de acesso, incluindo a designação dos blocos do uplink e do downlink. Ela inclui o seu próprio cabeçalho, que é monitorado pelos telefones móveis. Discutiremos em uma seção posterior as operações de transferência de dados em pacotes. Os dados são transmitidos pela interface aérea ao telefone móvel (MS) pela camada física (RF de GSM). Os dados sobem então pela pilha do protocolo da MS, na qual os cabeçalhos são removidos um a um a cada camada. Finalmente, a mensagem de e-mail original é recebida na camada de aplicação pelo usuário móvel.
  14. 14. 14 Seção 4: Identidades do GPRS Antes de aprofundar a discussão sobre as operações do GPRS e a interface aérea, definiremos algumas identidades comuns associadas ao GPRS. IMSI (identidade internacional do assinante móvel), associada ao cartão SIM (módulo de identidade do assinante), é o mesmo para o serviço GPRS e GSM. Mesmo um SIM de uma assinatura somente GPRS terá uma IMSI. P-TMSI (identidade do assinante móvel do serviço de pacotes temporário). Nós estamos acostumados com o conceito de TMSI no GSM, usada para manter a confidencialidade da IMSI. A TMSI é alocada à unidade móvel GSM pelo VLR em uma atualização de localização e conexão (attach) GSM. Uma TMSI do serviço de pacotes é similar à TMSI, mas é atribuída pelo SGSN quando o telefone móvel executa uma conexão (attach) GPRS. A P-TMSI também é usada pela unidade móvel para definir outra identidade, o TLLI. TLLI (identificador de enlace lógico temporário) O TLLI é uma identidade usada (juntamente com a NSAPI, discutida anteriormente) durante uma sessão de PDP para identificar o telefone móvel nas interfaces Um e Gb. Enquanto que a NSAPI é usada na camada SNDCP, a TLLI é usada na camada RLC/MAC na interface Um e na camada BSSGP na interface Gb. A TLLI pode ser obtida a partir de uma das seguintes quatro fontes: • TLLI local, que é obtida usando a P-TMSI do SGSN. Esta é válida somente na área de roteamento associada ao P-TMSI. • TLLI exterior, que obtida a partir da P-TMSI alocada em uma área de roteamento diferente. • TLLI aleatória, que é selecionada aleatoriamente pelo telefone móvel e usada quando a unidade móvel não tiver uma P-TMSI válida disponível ou quando a unidade móvel originar um acesso anônimo. • TLLI auxiliar, selecionada pelo SGSN e usada pelo SGSN e unidade móvel para identificar de forma inequívoca uma MM (gerência de mobilidade) de acesso anônimo e um contexto de PDP. Figura 6. Identidades do GPRS
  15. 15. 15 TBF (fluxo de blocos temporário) A conexão física entre a MS e o BSS, criada durante o enlace da transferência de dados em pacotes, é denominada fluxo de blocos temporário (TBF). O trabalho mais importante da camada RLC é a segmentação. Como descrito anteriormente, a camada RLC pega um ou mais blocos de LLC e segmenta-os em blocos RLC menores. Estes blocos LLC são conhecidos coletivamente como TBF (fluxo de blocos temporário). Assim, um TBF é uma conexão física usada pelas duas entidades de recursos de rádio para o suporte à transferência unidirecional das PDUs LLC nos canais físicos de dados em pacotes. Todos os quadros LLC que foram segmentados para uma NPDU (unidade de dados de pacotes da rede) formam um TBF no enlace lógico na interface aérea. Cada TBF recebe recursos alocados na interface aérea, em um ou mais canais de tráfego de dados em pacotes (PDTCH). O TBF é temporário, sendo mantido somente enquanto durar a transferência dos dados. O TBF fica “aberto” durante a transferência de dados e “fechado” quando esta transferência for interrompida. TFI (identificador de fluxo temporário) Cada TBF recebe uma TFI (identidade de fluxo temporário), que é alocada a uma unidade móvel para a transferência de pacotes no uplink e no downlink. Esta TFI é exclusiva para cada um dos TBFs de uma direção, e é usada no lugar da identidade da MS na camada RLC/MAC. O mesmo valor de TFI pode ser atribuído a TBFs concorrentes que estejam em direções opostas. Uma mensagem de atribuição de recurso que contém a TFI precede a transferência de/para a MS dos quadros LLC que pertencem a um TBF. Para endereçar as entidades RLC de mesmo nível, a mesma TFI é incluída em cada cabeçalho do RLC que pertença ao TBF, assim como na mensagem de controle associada à transferência do quadro LLC (por exemplo, acknowledgements). Como a TFI contém um campo de cinco bits, podem ser usados valores de 0 a 31. USF (flag de status do uplink) O USF, que é transmitido no cabeçalho do RLC/MAC do bloco RLC do downlink, diz à unidade móvel quais recursos do uplink que serão usados. Vários usuários podem ser multiplexados em um mesmo timeslot, transmitindo somente quando o USF indica que é a sua vez. A unidade móvel monitora os USFs nos PDCHs alocados e transmite os blocos de rádio nos canais que trazem no momento o valor de USF reservado ao uso da MS. RAI (identidade da área de roteamento) Um subconjunto de uma área de localização, a RAI é uma identidade exclusiva, similar à LAI (identidade da área de localização). Quando a unidade móvel passa de uma área de roteamento a outra, ela executa atualizações de área de roteamento pelo SGSN. Um SGSN pode controlar uma ou mais áreas de roteamento. Como um GGSN pode ter enlaces a vários SGSNs, o SGSN em que a unidade móvel estiver residindo no momento deve ser identificado para que os pacotes possam ser roteados corretamente. Por este motivo, a unidade móvel executa a atualização da área de roteamento quando entra em uma área de roteamento nova. Se esta área pertencer a um SGSN diferente, uma RAI nova para a MS será enviada pelo HLR (registro de localização de assinante móvel local) para a comunicação com o GGSN. Se houver uma sessão PDP ativa, também serão enviadas informações de atualização de PDP. A identidade da área de roteamento é formada pelo MCC (código de país da unidade móvel), MNC (código de rede da unidade móvel), LAC (código da área de localização) e o RAC (código da área de roteamento).
  16. 16. 16 Seção 5: Interface aérea GPRS Voltemos agora a nossa atenção para a interface aérea GPRS. É importante observar que o GPRS usa os recursos GSM existentes - espectro, canais (200 kHz) e timeslots. Os usuários do GPRS compartilharão um mesmo quadro TDMA com os usuários de voz do GSM, aumentando assim os requisitos de capacidade. Até um certo ponto, o GPRS trata da maior parte da demanda de capacidade multiplexando vários usuários nos mesmos canais físicos (timeslots). Além disso, a interface aérea do GPRS irá alocar recursos dinamicamente (timeslots) para voz e PDCH (canais de dados em pacotes). Determinados canais físicos serão configurados para o uso dos dados em pacotes, mas estes podem ser reconfigurados para voz, se necessário. O GPRS deve alocar recursos para a sinalização e controle de tráfego. Como o GPRS tem o seu próprio conjunto de parâmetros para o acesso à rede e controle de chamadas, ele precisará ter canais separados para as funções de controle comum de broadcast (como paging, acesso aleatório e concessão de acesso) e tráfego associado (similar ao SACCH). Alguns dos canais de sinalização podem ser multiplexados com os canais GSM, usando diferentes configurações de canais possíveis. Antes de descrever as opções para a alocação de recursos, vamos rever alguns termos usados. O diagrama mostra que os quadros GSM ou GPRS são formados por oito timeslots. O timeslot 0 é reservado para o GSM BCH (canal de broadcast). Os timeslots de CS (comutação de circuitos) são usados para chamadas de voz GSM ou dados comutados por circuitos. O PBCH (canal de broadcast por pacotes) e os dados p (dados em pacotes) são usados nos canais GPRS. Há duas opções disponíveis para o estabelecimento de canais de interface aérea do GPRS (mostradas na figura abaixo): A opção 1 usa os recursos de sinalização GSM, mas estabelece canais de dados em pacotes separados para o controle de tráfego. Os canais de tráfego podem ser fixos ou dinâmicos. A opção 2 separa os recursos GPRS inteiramente dos recursos GSM. Há diversas configurações possíveis com esta opção. Um PBCH pode ser usado para transportar informações de GPRS-BCH, canais de controle comum, canais de dados em pacotes GPRS e canais associados ao tráfego. Se os canais de dados em pacotes não forem transportados pelo PBCH ou se for necessário usar recursos PDCH adicionais, é possível configurar timeslots separados. Os canais de dados em pacotes podem usar qualquer timeslot diferente do BCH (timeslot 0). A unidade móvel irá primeiro sincronizar-se com o GSM BCH. Como o PBCH não usa o timeslot 0, as unidades precisarão usar o processo camp-on do GSM para entrar em camp-on com o BCH. Uma mensagem “informação do sistema tipo 13” do BCH (que o identifica como uma rede GPRS) então notificará as unidades móveis do PBCH. Figura 7. Canalização da interface aérea do GPRS
  17. 17. 17 Figura 8. Canais lógicos do GPRS Canais lógicos do GPRS Canais lógicos são funções pré-definidas baseadas nos quadros de um canal físico. Os canais físicos do GPRS geralmente transportam dois tipos de informações: sinalização de controle para estabelecer e manter um serviço GPRS e o tráfego de dados do usuário. Desta forma, os canais lógicos do GPRS podem ser classificados como canais de controle em pacotes e canais de tráfego em pacotes. Os canais de controle em pacotes do GPRS podem ser subdivididos em funções de controle comum e funções de controle de broadcast, de forma similar à do GSM. O PCCCH (canal de controle comum em pacotes) é um conjunto de canais lógicos usado para a sinalização comum entre a estação móvel e a estação radiobase. • O PRACH (canal de acesso aleatório em pacotes) é usado somente no uplink para usar a transferência do uplink. • O PPCH (canal de paging em pacotes) é usado para buscar uma unidade móvel antes da transferência de pacotes do downlink. O PPCH é usado para o paging de comutação de circuitos e serviços GPRS, dependendo dos modos de operação da rede e a classe da unidade móvel. (Esta função pode ser usada na Classe A ou B). • O PAGCH (canal de concessão de acesso em pacotes) é usado na fase de estabelecimento da transferência de pacotes para enviar mensagens de atribuição de recursos a uma unidade móvel antes da transferência dos pacotes. Outras mensagens de atribuição de recursos também serão enviadas em um PCCH se a unidade móvel já estiver envolvida em uma transferência de pacotes. • O PNCH (canal de notificação de pacotes) é usado para enviar a notificação multicast ponto-multiponto a um grupo de unidades móveis antes da transferência de pacotes multicast ponto-multiponto. O PBCCH (canal de controle de broadcast em pacotes) é usado para enviar informações do sistema de dados em pacotes em broadcast a todas as unidades móveis GPRS de uma célula. O PBCCH pode não estar presente em determinadas combinações de canais; neste caso, o BCCH será usado para enviar informações do sistema de pacotes em broadcast. O PTCH (canal de tráfego em pacotes) é formado pelos seguintes subcanais associados ao tráfego: • O PDTCH (canal de tráfego de dados em pacotes) é alocado para a transferência de dados. Este canal é dedicado temporariamente a uma móvel ou a um grupo de unidades móveis em aplicações multicast. Uma unidade móvel pode usar vários PDTCHs em paralelo para a transferência de dados em pacotes durante a operação multislot. • O PACCH (canal de controle associado em pacotes) é usado para transportar informações de sinalização relacionadas a uma determinada unidade móvel - por exemplo, controle de potência, acknowledgements de pacotes ou reatribuição de recursos. Um PACCH é associado a um ou diversos PDTCHs atribuídos concorrentemente a uma unidade móvel. • O PTCCH (canal de controle de avanço de timing em pacotes) é usado no uplink para a transmissão de bursts de acesso aleatório. Ele permite a estimativa do avanço de timing requerido pela unidade móvel no modo de transferência de pacotes. No downlink, o PTCCH pode ser usado para atualizar o avanço de timing em várias unidades móveis.
  18. 18. 18 Figura 9. Mapeamento dos canais lógicos em canais físicos Mapeamento de canais lógicos em canais físicos Nós definimos vários canais lógicos para o GPRS. Estes canais não necessariamente requerem recursos físicos separados. Os canais lógicos são mapeados em canais físicos pela técnica “multiframing”. Um multiquadro é um conjunto de um número fixo de quadros TDMA que juntos têm uma funcionalidade atribuída. Esta seção descreve como os blocos de controle do enlace de rádio (RLC) são gerados com o uso de multiquadros. O diagrama mostra um único quadro TDMA do GPRS formado por oito timeslots (0 - 7) no eixo vertical. Estes quadros são repetidos, como indicado pelo exemplo no timeslot 2 (TN2 - timeslot número 2). No GPRS, nós definimos um multiquadro de 52 quadros. Cada timeslot 2 dos quadros 0-51 é combinado para formar o multiquadro mostrado. O multiquadro é dividido em 12 blocos, numerados de 0-11; cada um destes formado por quatro quadros TDMA. Estes blocos às vezes não referidos como blocos de rádio, e a eles são atribuídas determinadas funções de canais lógicos. Os 12 blocos de rádio respondem por 48 dos quadros TDMA em um multiquadro. Dos quatro quadros restantes, dois quadros single-burst são usados para o canal de timing e dois são deixados ociosos para a decodificação de BSIC e medições de interferência para o controle de potência da célula vizinha. A ETSI define três combinações de canais lógicos que podem ser mapeados em um único canal físico por um multiquadro de 52 quadros. A primeira combinação permite que todas as categorias de canais lógicos sejam mapeadas em um canal físico. Como há somente 12 blocos para canais lógicos em um multiquadro, esta opção definitivamente reduzirá o número de canais disponível para cada categoria. A segunda combinação permite que todos os canais diferentes do PBCCH sejam mapeados em um canal físico. Isto aumenta a capacidade do PCCCH e do PDTCH. Entretanto, esta opção pode ser usada somente se houver um PBCCH (ou BCCH) em algum outro canal físico - por exemplo, em uma configuração que usa o GSM BCCH. A última combinação é formada somente por tráfego e sinalização dedicada, que exclui o PBCCH e o PCCH. Esta combinação fornece mais PDTCHs em um canal físico, e pode ser usada somente se houver um PBCCH/PCCH em algum outro canal, ou o GSM BCCH/CCCH pode ser usado. O conceito de mestre-escravo pode ser usado em alguns casos em que um canal físico esteja configurado como mestre e transporte todos os tipos de canais lógicos (a primeira combinação) e outros canais físicos estejam configurados como “escravos” e usados somente para a transferência de dados (a terceira combinação). Quando a demanda pela transferência de dados for baixa, estes outros canais físicos podem ser usados para serviços de comutação de circuitos.
  19. 19. 19 Coordenação das funções GSM e GPRS Há determinadas funções comuns ao GSM e GPRS. Entre estas estão o paging, atualizações de localização e a conexão/desconexão (attach/ dettach). O paging é uma função crítica, que deve ser coordenada entre o GSM e o GPRS. Para fazer isto, a rede irá operar em um dos três modos abaixo. Este modo de operação é difundido (broadcast) na mensagem de informações do sistema e será o mesmo dentro de uma área de roteamento. Modo de operação de rede 1 Neste modo, o telefone móvel monitora somente um canal de paging durante a conexão GPRS. A rede envia o paging por comutação de circuitos por um canal de paging GPRS ou em um canal de paging GSM CCCH (canal de controle comum) (dependendo da combinação de canais). Para enviar o paging por comutação de circuitos no canal de paging GPRS, a interface Gs deve estar presente. Modo de operação de rede 2 O canal de paging CCCH é usado no paging por comutação de circuitos e GPRS. Em seguida, a unidade móvel deve monitorar somente o canal de paging CCCH. Modo de operação de rede 3 Neste modo, a unidade móvel monitora o CCCH e o canal de paging GPRS (PPCH). A unidade móvel receberá pages por comutação de circuitos no CCCH e pages GPRS em um PPCH. Para monitorar ambos os canais de paging, a unidade móvel deverá ser Classe A ou Classe B. As conexões e as atualizações de localização também dependerão dos modos de operação da rede e da classe de móvel. O modo de operação de rede é parte das informações do sistema de broadcast transmitido às unidades móveis, e deve ser o mesmo para cada célula dentro de uma área de roteamento. Após receber estas informações, a unidade móvel determina se irá executar uma conexão GPRS, uma conexão IMSI ou ambos. Esta determinação depende não somente do modo de rede, mas também da classe da unidade móvel, que especifica se a unidade móvel poderá ou não executar o attach ou detach simultâneos. No modo de operação de rede 1, com uma unidade móvel com conexão IMSI e GPRS, devem ser executadas atualizações combinadas de área de roteamento/área de localização. Nos modos de operação de rede 2 ou 3, uma unidade móvel que possa fazer attaches GPRS e IMSI deve executar uma atualização de área de roteamento e acessar o canal de controle comutado por circuito na operação de comutação de circuitos ou, se a operação de comutação de circuitos não for necessária, executar uma desconexão.
  20. 20. 20 Configurações multislot Uma configuração multislot é formada por vários canais comutados por circuitos ou pacotes juntos com seus canais de controle associados, todos alocados ao mesmo telefone móvel. A configuração multislot ocupa até 8 canais físicos, com diferentes números de timeslot (TNs), mas os mesmos parâmetros de freqüência e a mesma seqüência de preparação (training). Uma unidade móvel pode ter alocados diversos PDTCH/Us (canal de dados de tráfego em pacotes/uplink) ou PDTCH/Ds (canal de dados de tráfego em pacotes/downlink) para uma comunicação originada por móvel ou terminada em uma móvel, respectivamente. Neste contexto, a alocação refere-se à lista de PDCHs que podem transportar dinamicamente os PDTCHs para esta móvel específica. O PACCH pode ser mapeado em qualquer um dos PDCHs alocados. Se houver m timeslots alocados para a recepção e n timeslots alocados para a transmissão, deverá haver Min (m, n) timeslots de recepção e transmissão com o mesmo TN. A configuração multislots depende do tipo das unidades móveis: • As unidades móveis do tipo 1 não transmitem e recebem simultaneamente. Desta forma, a sua utilização de multislots é limitada pelo tempo necessário para fazer medições de células vizinhas. • As unidades móveis do tipo 2 podem transmitir e receber simultaneamente; desta forma, permitem o uso de um maior número de slots. Há 29 classes de multislots definidas, cada uma com parâmetros específicos. Os principais parâmetros para a configuração multislots são: • Tx, o número de timeslots simultâneos nos quais uma unidade móvel pode transmitir • Rx, o número de timeslots simultâneos nos quais uma unidade móvel pode receber • Sum (soma), o número total de timeslots que podem ser usados no uplink e no downlink. Por exemplo, a expressão TX =3 e Rx=3, Sum = 4 significa que uma unidade móvel desta classe pode receber em três slots e transmitir em somente um; receber em dois e transmitir em dois ou receber em um e transmitir em três. Em qualquer caso, o número total de timeslots não pode ser maior que quatro. • Tn, o número mínimo de timeslots necessário para medir os canais adjacentes para uma classe de unidade móvel particular. Este parâmetro impõe limitações nos tipos de unidade móvel para uma classe em particular. Figura 10. Classe multislot de MS Classe de multislot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Timeslots de Rx 1 2 2 3 2 3 3 4 3 4 4 4 3 4 5 6 7 8 6 6 6 6 6 8 8 8 8 8 8 Timeslots de Tx 1 1 2 1 2 2 3 1 2 2 3 4 3 4 5 6 7 8 2 3 4 4 6 2 3 4 4 6 8 Sum 2 3 4 4 4 4 4 5 5 5 5 5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA Tn 4 3 3 3 3 3 3 2 2 2 2 2 3 3 3 2 1 0 2 2 2 2 2 2 2 2 2 2 2 A tabela acima relaciona as 29 classes de multislots. As classes 2, 8 e 12 serão as preferidas nos estágios iniciais da implementação do GPRS. As classes de 13 a 29 poderão ser utilizadas somente pelas unidades móveis do tipo 2.
  21. 21. 21 Controle de potência de RF O controle de potência de RF é usado para minimizar a potência de transmissão exigida pela unidade móvel ou o BSS, mantendo a qualidade dos enlaces de rádio. Minimizando os níveis de potência de transmissão, podemos reduzir a interferência entre usuários de co-canais. No caso de serviços comutados por circuitos, a unidade móvel é comandada pela estação radiobase para alterar o seu nível de potência. A estação radiobase dirige este processo, com o auxílio das medições de nível de Rx no uplink e da qualidade de Rx. No GPRS, entretanto, este processo é controlado pela unidade móvel, pois a transmissão não é contínua. A unidade móvel calcula a potência de saída (em dBm) que será usada no PDCH de cada uplink. A potência de saída de qualquer canal deve ser o mínimo necessário para manter a qualidade do serviço, com exceção da potência máxima transmitida nos bursts de acesso. A potência de saída é calculada pela unidade móvel usando parâmetros de controle de potência específicos definidos pela rede, que são dependentes da potência máxima permitida na célula, da classe de potência da unidade móvel e da intensidade do sinal do receptor. Para medir a potência de saída mínima no uplink de uma unidade móvel, Pch = min (τ0 -τch -(α * (C+48)), Pmax Esta fórmula tenta medir o nível mais preciso do sinal de recepção. O valor de C é o nível de sinal de recepção na unidade móvel, calculado pela diferença na potência recebida da BTS no controle de potência do downlink com relação ao PBCCH. O cálculo de C aqui está simplificado; na prática, C é a medição de média móvel com alguns parâmetros de multiquadro associados, obtidos a partir das mensagens de informações do sistema. τch é enviado à unidade móvel na mensagem de controle do RLC. A rede pode modificar este parâmetro a qualquer momento em 31 passos de 2 dB cada. Este parâmetro é modificado dinamicamente, com o auxílio de algumas medições da BTS. O elemento mais importante do cálculo de τch e, portanto, do valor disponível para a unidade móvel é a medição da potência da interferência. A BTS medirá a potência nos quadros ociosos (do multiquadro GPRS de 52 quadros) e aplica um peso às medições, usando o alfa (0 a 1, em passos de 0,1 dB). τch tem um papel importante no controle da saída de potência da unidade móvel, pois com esta medição o controle de potência passa a ser o controle da qualidade. Se removermos τch , o cálculo de potência da estação móvel será baseado somente no nível do sinal recebido. τ0 = 39 dBm para GSM 900 ou 36 dBm para GSM 1800 Pmax = potência máxima de saída permitida na célula.
  22. 22. 22 Figura 11. Avanço de timing no modo GPRS Avanço de timing no modo GPRS A principal diferença entre a transmissão por comutação de circuitos e a transmissão por comutação de pacotes é que a transmissão por comutação de pacotes não é contínua. Durante a operação da comutação de circuitos, quando a unidade móvel estiver transmitindo continuamente, a BTS pode obter facilmente o atraso com relação aos valores de timing anteriores. Isto seria muito difícil nas aplicações de comutação de pacotes, pois a unidade móvel estará transmitindo somente nos blocos de rádio atribuídos, e o intervalo entre dois blocos pode ser significativo. Para evitar a interferência interna do timeslot e outros problemas possíveis. o GPRS implementa uma técnica nova para conseguir o timing correto dos bursts. Esta técnica, chamada avanço de timing, é executada em duas partes: • Avanço de timing inicial, feito de forma similar à da comutação de circuitos, na qual o atraso inicial é medido pela recepção de PRACH/RACH na estação radiobase, usando o período de guarda estendido de 88 bits. • Avanço de timing contínuo, segue o avanço de timing inicial e é executado continuamente, usando os canais lógicos PTCCH (canais de controle de avanço de timing dos pacotes) no multiquadro de 52 quadros. Há dois canais PTCCH em um multiquadro. Nós criamos um grupo de oito multiquadros (somente para a operação de avanço de timing), que nos dá 16 canais lógicos PTCCH. Cada um dos PTCCHs agora é considerado um subcanal, e oferece um valor de índice TAI (índice de avanço de timing) entre 0-15. A unidade móvel recebe um valor TAI na mensagem de atribuição. Com este TAI, a unidade móvel transmitirá um burst de acesso em cada ocorrência de subcanal atribuída (uma vez em oito multiquadros). A estação radiobase irá capturar este burst e calcular o atraso do acesso e o novo valor de avanço de timing. O novo valor de avanço de timing será enviado à unidade móvel na mensagem TA enviada no canal PTCCH do downlink. Uma mensagem de sinalização precisa de quatro bursts, assim uma mensagem de TA ocorrerá em quatro bursts. Uma mensagem TA conterá os valores de TA associados a todos os 16 valores TAI. O exemplo acima ilustra o processo de avanço de timing. Nós temos oito quadros, nos quais cada PTCCH tem um valor de índice atribuído de TAI=0 a TAI=15. Uma unidade móvel com TAI=5 transmitirá o burst de acesso no terceiro multiquadro, segundo quadro PTCCH neste conjunto de oito quadros. A resposta correspondente, com o valor de avanço de timing atualizado, será recebida na mensagem TA 3. Este mesmo valor de TA será repetido em todas as mensagens TA até que o próximo conjunto de oito multiquadros enviado pela unidade móvel envie um novo burst de acesso no subcanal TAI=5. Por este processo, a unidade móvel atualiza desta forma a sua posição (atraso de acesso) uma vez a cada oito multiquadros GPRS (aproximadamente a cada 2 segundos) e recebe atualizações nestes mesmos intervalos.
  23. 23. 23 Figura 12. Esquemas de codificação de dados em blocos de rádio Codificação de dados nos blocos de rádio Após ter definido alguns processos e operações comuns de RF, voltamos novamente às informações que são enviadas na interface aérea. Anteriormente, discutimos rapidamente a codificação na interface aérea. A interface de rádio limita a taxa máxima de transferência de dados. Um burst TDMA pode transportar até 114 bits de informação; desta forma, cada bloco de rádio de quatro bursts pode transportar somente 456 bits de informação. As informações transportadas nestes bits são os dados do usuário e a codificação. A codificação proporciona a detecção do erro e a correção do erro, sendo essencial para a gerência de problemas na interface aérea. O processo comum usado na codificação GSM é a inserção de bits CRC e a codificação convolucional. O GPRS usa os mesmos mecanismos, mas oferece quatro opções para a codificação dos dados por maneiras diferentes, como visto na figura acima. O esquema de codificação 1 tem o nível mais alto de proteção, portanto, o menor número de erros. A desvantagem é que proporciona a menor taxa de dados. Cada um dos próximos esquemas de codificação (2, 3 e 4) compromete de alguma forma o nível de codificação e, assim, aumenta a probabilidade de erros. Por outro lado, um número mais alto de esquema de codificação (4 é o número mais alto de esquema de codificação) aumenta a taxa de dados. A tabela acima ilustra este processo. À medida que passamos a esquemas de codificação mais altos, reduzimos o número de bits de CRC e, assim, a probabilidade da detecção de quadros com problemas. Nós também removemos alguns dos bits de proteção (um processo denominado “puncturing”). Agora, se a interface de rádio for de baixa qualidade, teremos mais problemas com erros. O esquema de codificação e o número de timeslots determinam parcialmente a taxa de dados teórica. Por exemplo, o uso de oito timeslots e do esquema de codificação 4 resultará em uma taxa de dados teórica de 171,2 kbps (21,4 kbps x 8 timeslots). Entretanto, por considerações práticas, incluindo degradações na interface aérea e a existência de telefones GPRS que utilizam mais de 3-4 timeslots, esta taxa de dados teórica não pode ser alcançada em condições normais de operação. Os esquemas de codificação podem ser atribuídos por diversas formas - primeiro no processo de atribuição de canal inicial e posteriormente com o “toggling”, usando os bits de controle no burst. É importante lembrar que embora os esquemas de codificação tenham um papel importante na otimização da taxa de dados na interface aérea, no final será a qualidade da interface aérea que determinará os resultados. Os esquemas de codificação 1 e 2 serão comuns nas primeiras instalações de redes GPRS.
  24. 24. 24 Seção 6: Operações de transferência de pacotes de dados Nesta seção final, examinamos alguns dos procedimentos associados à transferência de dados em pacotes. Isto é importante porque os conceitos descritos aqui fornecerão valiosas informações básicas aos engenheiros de RF que precisam eliminar problemas de redes de dados GPRS usando os recursos de decodificação do protocolo de mensagens da camada 3 das ferramentas de drive test comerciais de fornecedores como a Agilent Technologies. Como vimos antes, para iniciar uma transferência de pacotes, um móvel GPRS precisa primeiro conectar-se à rede GPRS e depois executar um processo específico do GPRS conhecido como ativação do contexto de PDP. O contexto de PDP atribui um endereço IP ao móvel (se este não tiver um endereço estático). Em seguida, a unidade móvel pode acessar a rede, solicitar recursos, enviar dados, entrar no modo standby se não houver dados sendo transmitidos, e repetir o todo o processo novamente. Transferência de pacotes de dados no uplink Um telefone móvel precisa solicitar recursos do BSS (subsistema da estação radiobase). O telefone móvel inicia uma transferência de dados fazendo uma solicitação de canal de pacotes (PRACH ou RACH). A rede responde no PAGCH (canal de concessão de acesso de pacotes) ou AGCH, respectivamente. É possível usar um método de acesso de pacotes de uma ou duas fases. No acesso de uma fase, a rede responde à solicitação de canal de pacotes com a atribuição do uplink de pacotes, reservando recursos em um ou mais PDCHs para a transferência do uplink de um número de blocos de rádio. A reserva do recurso é feita em conformidade com os recursos solicitados na solicitação de canais de pacotes. • Usando o RACH, a solicitação do canal de pacotes tem somente dois valores-causa para indicar o GPRS. Estes podem ser usados para solicitar recursos limitados ou o acesso em duas fases. • Usando o PRACH, a solicitação de canal de pacotes pode conter informações suficientes (classe de multislot, número de blocos necessário, etc.) sobre os recursos solicitados para que a rede atribua recursos de uplink em um ou vários PDCHs pela mensagem de atribuição de uplink de pacotes. A unidade móvel ou a rede pode iniciar uma solicitação de acesso em duas fases. A unidade móvel pode solicitar o acesso em duas fases em uma mensagem de solicitação de canal de pacotes. A rede pode responder com um pedido para enviar a solicitação de recursos de pacotes ou com um pedido para continuar com o procedimento de acesso em uma fase. A mensagem de solicitação de recursos de pacotes contém uma descrição completa dos recursos solicitados para a transferência no uplink. A unidade móvel pode indicar o método “medium access” (recursos de acesso de rádio, motivos para a solicitação, nível atual do serviço recebido, nível de interferência em todos os timeslots) preferido para o TBF. A rede responde com uma atribuição de uplink de pacotes, reservando recursos para a transferência no uplink e definindo os parâmetros de transferência de dados real. Se a rede não responder à solicitação de canal de pacotes dentro de um período de tempo pré-definido, a unidade móvel fará outra tentativa após um tempo de back-off aleatório. Figura 13. Transferência de dados no uplink
  25. 25. 25 Figura 14. Transferência de dados do uplink - alocação dinâmica de blocos de rádio Alocação dinâmica de blocos de rádio O próximo passo no processo de transferência de dados em pacotes é a alocação dos blocos de rádio. São usados os tipos de alocação fixa e dinâmica. Comecemos pela alocação dinâmica. Como a unidade móvel sabe em qual bloco RLC deverá transmitir? O processo pelo qual a unidade móvel é informada sobre a disponibilidade de recursos para a transmissão bloco-a-bloco pelo uplink é conhecido como alocação dinâmica. A rede envia uma mensagem de atribuição de uplink de pacotes ao móvel com a lista de valores de PDCHs atribuídos (timeslot e portadora) e o flag de status de uplink (USF) correspondente. Além disso, uma TFI exclusiva é alocada, e a partir deste momento incluída em cada bloco de dados e controle de RLC relacionados a este fluxo de blocos temporário. A unidade móvel monitora os USFs nos PDCHs alocados e transmite os blocos de rádio nos canais que trazem o valor de USF reservado para o uso desta unidade móvel. O USF é um cabeçalho MAC de 3 bits. Ele atribui um bloco de rádio ou quatro blocos de rádio por vez à unidade móvel. Assim, quando a unidade móvel detectar o USF em um downlink, ela transmitirá um único bloco RLC/MAC ou uma seqüência de quatro blocos. A unidade móvel inclui na transmissão de blocos no uplink o número de blocos restantes no fluxo de blocos temporário. A rede continuará a atribuir blocos de rádio à unidade móvel até que esta indique que não tem mais blocos para transmitir.
  26. 26. 26 Figura 15. Transferência de dados no uplink - alocação fixa Alocação fixa de blocos de rádio Além da alocação dinâmica de recursos para a transmissão de blocos, há a opção da alocação fixa. Com este método, a rede na mensagem de atribuição de uplink de pacotes atribui todos os blocos solicitados pelo móvel na mensagem de solicitação de recursos de pacotes. Esta atribuição de recursos incluirá o parâmetro de freqüência, timeslots, um bitmap de 1 a 127 bits e um número de quadro inicial. Quando a unidade móvel recebe estas informações, ela começa a transmitir os dados no uplink nos blocos correspondentes, começando pelo número de quadro inicial e usando as informações no bitmap (0 = bloco não atribuído; 1 = bloco atribuído). Este exemplo mostra uma atribuição de dois timeslots (TN 2 e 6), um quadro inicial igual a 5 (com relação a onde foi recebido), e um bitmap 100111 (veja os blocos mostrados em destaque).
  27. 27. 27 Figura 16. Transferência de dados no uplink Transferência de blocos de dados do RLC Os blocos de dados do RLC são transferidos com o uso de um processo denominado modo acknowledged RLC/MAC. Este processo é controlado por um mecanismo ARQ seletivo e pela numeração dos blocos de dados RLC dentro de um fluxo de blocos temporário. O processo de transferência entre a unidade móvel e a estação radiobase é mostrado no diagrama. Compreendendo este processo, os engenheiros de RF terão informações básicas úteis que os ajudará a eliminar problemas de rede usando as funções de decodificação de mensagens da camada 3 encontradas nas ferramentas de drive test como as fornecidas pela Agilent. Comecemos pela transferência de dados no uplink. O lado de envio (o móvel ou a rede) transmite blocos em uma janela, e o lado de recepção envia mensagens ack/nack (reconhecido/não reconhecido) pelo downlink de pacotes, conforme necessário. Cada uma destas mensagens reconhece todos os blocos de dados do RLC recebidos corretamente até um número de seqüência de blocos (BSN) indicado, assim “deslocando” o início da janela de envio no lado da transmissão. A mensagem de ack/nack de pacotes contém um bitmap dos números de seqüência de blocos RLC, no qual cada bit representa o status de recepção do bloco de dados (0 = nack, ou não reconhecido; 1=ack, ou reconhecido). A mensagem também fornece o valor absoluto inicial de BSN para o bitmap. Por exemplo, se os blocos de dados do RLC com números de BSN de 21 a 26 foram enviados pela móvel e os blocos 24 e 25 estiverem corrompidos, quando a rede enviar a mensagem de ack/nack, esta indicará os blocos que foram recebidos e os que não o foram. O bitmap será “111001”, iniciado por um “1” que reconhece o BSN 21 e contendo dois “0” para os BSNs 24 e 25. A mensagem de ack/nack pode ser enviada em qualquer um dos blocos atribuídos, e o cabeçalho RLC/MAC indicará que esta é uma mensagem de controle. Uma móvel tem uma janela de transmissão de somente 64 blocos e, se não receber uma mensagem de ack/nack dentro desta janela, ela notificará a rede no próximo bloco disponível que a janela está “congelada”. A unidade móvel também enviará um “valor de contagem regressiva” (de 0 - 15) no cabeçalho do bloco de dados de RLC no uplink para informar à rede quantos blocos de dados de RLC permanecem no TBF do uplink atual. Quando a contagem regressiva chegar a 0, a rede poderá enviar a mensagem final de ack/nack. Após a móvel ter enviado o último bloco de dados com um valor de contagem regressiva igual a 0, ela iniciará um timer. Ao final do período de 5 segundos, a unidade móvel irá considerar a atribuição atual dos recursos como inválida.
  28. 28. 28 Figura 17. Transferência de dados no downlink Transferência de pacotes de dados no downlink Agora, vejamos como funciona a transferência de dados no downlink. A rede inicia a transmissão de um pacote à unidade móvel no estado ready, usando uma mensagem de atribuição de downlink de pacotes. Se já houver uma transferência de pacotes em progresso no uplink, a mensagem de atribuição no downlink de pacotes poderá ser transmitida em um PACCH. Caso contrário, ela poderá ser enviada em um PCCCH ou um CCCH. A mensagem de atribuição de downlink de pacotes transporta informações ao móvel sobre os timeslots, os parâmetros de freqüência, avanço de timing, controle de potência, TFI e número do quadro TDMA inicial. A rede envia os blocos RLC/MAC que pertencem ao fluxo de blocos temporário (TBF) nos canais de downlink atribuídos. Geralmente, mais de uma unidade móvel é multiplexada nos PDCHs em um dado momento, e cada unidade móvel precisa de uma maneira para identificar a sua própria TBF. Isto é feito pela TFI no cabeçalho de RLC. Como definido anteriormente, a TFI é uma identidade exclusiva associada ao TBF em uma direção em um conjunto de PDCHs. O cabeçalho do MAC identifica o bloco de RLC como um bloco de controle/dados, e a TFI no cabeçalho do RLC identifica a unidade móvel à qual o bloco pertence. O cabeçalho do MAC nos blocos de RLC do downlink contém um bit para o polling da unidade móvel. Ele usa um campo de informação como o período relativo de bloco reservado (RRBP) para informar à unidade móvel o número de quadro relativo (e desta forma o bloco de rádio) após o qual a unidade móvel deve enviar a mensagem de ack/nack do downlink de pacotes. Há também um indicador de bloco final (FBI) no cabeçalho do RLC do downlink que sinaliza o bloco de dados RLC final e inicia a liberação do processo de recursos. Quando recebe a mensagem ack/nack final enviada pela unidade móvel, a rede inicia um timer (sem valor definido nas especificações GPRS) e no término da temporização, a TFI e todos os recursos atribuídos ao móvel são liberados. É possível para a rede alterar a atual atribuição de downlink por uso de uma mensagem de atribuição de downlink de pacotes ou uma mensagem de reconfiguração de timeslot de pacotes que, por sua vez, precisa ser reconhecida pela unidade móvel em um bloco de rádio reservado no uplink.
  29. 29. 29 Resseleção de células O último processo de transferência de dados que iremos considerar é a resseleção de células. Este processo é útil para que compreendamos como a unidade móvel fará o handover de uma chamada de uma célula a outra conforme a unidade móvel se desloca pela rede wireless. No GSM, a resseleção de células é um procedimento do modo ocioso, no qual não há recursos dedicados atribuídos ao móvel. Ao invés disso, este processo é realizado por cálculos de C1 e C2. No GPRS, a resseleção de célula é feita no modo de transferência de pacotes, assim como no modo ocioso. O GPRS também usa o cálculo de C1, que é chamado de critério de perda no percurso, e parâmetros configuráveis como o nível mínimo de recepção, potência de acesso e classmark. Estes parâmetros usados para o cálculo de C1 são agora específicos do GPRS. Opcionalmente, os sistemas GPRS podem usar o cálculo de C31, conhecido como critério de nível de sinal. Este cálculo fornece outros offsets fixos e temporários a C1 para estruturas de célula hierárquicas, sendo usado para atribuir prioridades às células para a resseleção do GPRS. Isto é, se todas as células em uma rede forem células que não são GPRS, será preferível forçar as unidades móveis GPRS a se conectar a uma célula GPRS. Os cálculos de C31 habilitam este processo. Para diferenciar as células que tenham uma mesma prioridade, o GPRS pode usar os cálculos de C32, conhecidos como parâmetro de critério de ranking de célula. A rede pode controlar os seus relatórios de medição de resseleção e solicitação de células a partir da unidade móvel. Esta solicitação é indicada pelo parâmetro “network control order”, que tem três valores possíveis, conforme definido abaixo: • NC0, o modo normal de controle da estação móvel. Neste modo, a unidade móvel executa a resseleção autônoma de célula usando C1, C31 e C32. • NC1, o modo de controle da estação móvel com relatórios de medição. Neste modo, a unidade móvel envia relatórios de medição à rede e executa a resseleção autônoma da célula usando C1, C31 e C32. • NC2, o modo de controle da rede. Neste modo, a unidade móvel envia relatórios de medição à rede, mas não executa a resseleção autônoma. Ao invés disso, a rede GPRS faz as reatribuições dos recursos de pacotes. Resumo A tecnologia GPRS inclui recursos de comutação de pacotes ao GSM que abrem as portas a novos serviços baseados em Internet e outras aplicações de dados em alta velocidade. Entretanto, o GPRS também inclui novos protocolos e complexidade à rede. Compreender a tecnologia e as mudanças que ela traz será vital para uma implementação bem sucedida do GPRS e a realização plena dos benefícios que ela traz à rede móvel.
  30. 30. Suporte, serviços e assistência de teste e medição da Agilent Technologies O objetivo da Agilent Technologies é maximizar o valor que você recebe e minimizar os seus riscos e problemas. Nós nos esforçamos para garantir que você terá os recursos de teste e medição pelos quais pagou e que terá o suporte de que precisa. Com os nossos amplos recursos de suporte e serviços, podemos ajudá-lo a escolher os produtos adequados e conseguir utilizá-los corretamente. Cada instrumento/ sistema que vendemos tem uma garantia global. O suporte está disponível por pelo menos cinco anos após a desativação da linha de produção do produto. Há dois conceitos básicos por trás da política de suporte da Agilent: “Nossa promessa” e “Seus benefícios”. Nossa promessa “Nossa promessa” quer dizer que o equipamento de teste e medição da Agilent terá o desempenho e as funções divulgadas. Quando você estiver escolhendo um equipamento novo, nós iremos ajudá-lo com informações sobre o produto, incluindo especificações realistas de desempenho e recomendações práticas fornecidas por engenheiros de teste experientes. Quando você estiver usando o equipamento da Agilent, nós podemos verificar se este equipamento está funcionando adequadamente, ajudar na operação do produto e fornecer uma assistência básica de medição para recursos específicos. Há muitas ferramentas disponíveis de auto-ajuda que podem ser consultadas pelo próprio cliente. Seus benefícios “Seus benefícios” significa que a Agilent oferece uma ampla linha de serviços adicionais especializados de teste e medição, que você pode adquirir conforme as suas necessidades técnicas e empresariais únicas. Resolva os problemas eficientemente e consiga uma vantagem competitiva contratando-nos para executar calibrações, upgrades extras, reparos fora da garantia e educação e treinamento no local, além do projeto, integração de sistemas, gerenciamento do projeto e outros serviços profissionais. Engenheiros e técnicos experientes da Agilent em todo o mundo podem ajudá-lo a maximizar a sua produtividade, otimizar o retorno sobre o investimento feito em seus instrumentos e sistemas da Agilent e obter uma precisão de medição confiável por toda a vida útil destes produtos. As especificações e descrições dos produtos apresentadas neste documento estão sujeitas a alterações sem aviso. Direitos autorais© 2002 Agilent Technologies Impresso no Brasil 5988-2598PTL Informações adicionais disponíveis em: http://www.agilent.com/find/brasil Para contatar a Agilent Technologies: Brasil: Tel.: (11) 4197-3600 Fax:(11)4197-3800 E-mail: tmobrasil@agilent.com Estados Unidos: Tel.: 1 800 452 4844 Canadá: Tel.:1 877 894 4414 Fax: (905) 282-6495 China: Tel.:800-810-0189 Fax:1-0800-650-0121 Europa: Tel.: (31 20) 547 2323 Fax: (31 20) 547 2390 Japão: Tel.: (81) 426 56 7832 Fax: (81) 426 56 7840 Coréia: Tel.: (82-2) 2004-5004 Fax: (82-2) 2004-5115 América Latina: Tel.: (305) 269 7500 Fax: (305) 269 7599 Taiwan: Tel.:080-004-7866 Fax: (886-2) 2545-6723 Outros países da Ásia-Pacífico: Tel.: (65) 375-8100 Fax: (65) 836-0252 E-mail: tm_asia@agilent.com

×