SlideShare uma empresa Scribd logo
1 de 12
Equivalence of GHG emissions
under the 2°C limit
Steve Smith1, 2
Jason Lowe2
Laila Gohar2
1UKCommittee on Climate Change
2Met Office Hadley Centre
Motivation
• Internationally agreed policy goal: ΔTmax < 2°C

• Climate policies are multi-gas, but only weakly linked to
  ΔTmax via the GWP100

• CO2-only studies show ΔTmax is constrained by total
  emissions over time (ΣECO2) 1

• GTP measures ΔT, but still relies on time horizon and
  doesn’t signal need to limit ΣECO2

• So how might ΣECO2 fit into a multi-gas emissions policy?

1 Allen
      et al. (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature
 Matthews et al. (2009) The proportionality of global warming to cumulative carbon emissions, Nature
Hypothesis
• On timescales relevant to
  2°C, GHGs can be divided
  into two baskets:
   – ‘long-lived’: ΔTmax  ΣE
   – ‘shorter-lived’: ΔTmax  Esustained


• Does this give a reliable
  prediction for ΔTmax?

• Where is the dividing line?
Experimental setup

                            MAGICC v5.3
                     RCP2.6 background forcings
Defining long- and shorter-lived GHGs
                          1
                                      HFC-32 (4.9yr)
                                                               HFC-227ea (34.2yr)
                                       CH4 (12yr)
                                          HFC-125 (29yr)
                                                    HFC-143a (52yr)
                        0.95
    r2 (ΔTmax, Epeak)




                                                                        HFE-125 (136yr)

                                                                    N2O (114yr)

                         0.9                                                   SF6 (3,200yr)
                                                                                 CO2



                        0.85
                               0.85             0.9                     0.95                   1
                                                       r2 (ΔTmax, ƩE)
ΔTmax vs. ΣE for long-lived GHGs
                                        5                                                                     1
                                                CO2                                                                    N2O (114yr)
                    Peak warming (°C)




                                                                                         Peak warming (°C)
                                        4                                                                    0.8
                                        3                                                                    0.6
                                        2                                                                    0.4
                                        1                                                                    0.2
                                        0                                                                     0
                                            0            1000      2000           3000                             0          2000       4000       6000
                                                Total emissions 2000-2400 (GtC)                                        Total emissions 2000-2400 (MtN)
                       0.05
                                                SF6 (3,200yr)
Peak warming (°C)




                       0.04
                       0.03
                       0.02                                                                                              ΔTmax = (PCTx )ΣE x
                       0.01
                                        0
                                            0      500    1000   1500     2000    2500
                                                 Total emissions 2000-2400 (kt)
Peak Commitment Temperatures
        Species   Lifetime (yr)     PCT (°C/kg)         CO2e
    CO2                         -            4.32E-16          1
    N2O                       114            1.33E-13        309
    HFC-23                    270            7.43E-12      17200
    HFC-236fa                 240            4.83E-12      11200
    SF6                      3200            1.73E-11      40100
    NF3                       740            1.11E-11      25600
    CF4                     50000            6.01E-12      13900
    C2 F 6                  10000            9.73E-12      22500
    C3 F 8                   2600            6.31E-12      14600
    c-C4F8                   3200            7.53E-12      17400
    C4F10                    2600            6.37E-12      14700
    C5F12                    4100            6.86E-12      15900
    C6F14                    3200            6.68E-12      15500
    C10F18                  >1000           ≥4.83E-12     ≥12100
    SF5CF3                    800            1.11E-11      25700
    HFE-125                   136            6.68E-12      15400
    PFPMIE                    800            6.42E-12      14900
ΔTmax vs. Esustained for shorter-lived GHGs

   dΔT (t )
 τ          = λΔRF(t ) - ΔT (t )
     dt
For sustained emissions:

 ΔTmax = ΔT (∞  )
                  sustained
       = λαx Ax E x
                  sustained
 ΔTmax = (SETx )E x

where: λ = climate sensitivity parameter
       αx = atmospheric lifetime of gas x
       Ax = radiative efficiency of gas x
Sustained Emission Temperatures
     Species           Lifetime (yr)     Radiative efficiency (Wm-2ppb-1)      SET (°Ckg-1yr) *     CH4e
CH4†                                12                              3.70E-04             1.74E-12        1
HFC-32                             4.9                                  0.11             4.66E-11       27
HFC-125                             29                                  0.23             2.50E-10      144
HFC-134a                            14                                  0.16             9.88E-11       57
HFC-143a                            52                                  0.13             3.62E-10      208
HFC-152a                           1.4                                  0.09             8.58E-12        5
HFC-227ea                         34.2                                  0.26             2.35E-10      135
HFC-245fa                          7.6                                  0.28             7.14E-11       41
HFC-365mfc                         8.6                                  0.21             5.49E-11       32
HFC-43-10mee                      15.9                                   0.4             1.14E-10       65
HFE-134                             26                                  0.45             4.46E-10      256
HFE-143a                           4.3                                  0.27             5.22E-11       30
HCFE-235da2                        2.6                                  0.38             2.41E-11       14
HFE-245cb2                         5.1                                  0.32             5.56E-11       32
HFE-245fa2                         4.9                                  0.31             4.54E-11       26

* Values calculated for λ=0.8K(Wm-2)-1
† CH4 SET includes OH lifetime enhancement and indirect O3 & stratospheric H2O effects
ΔT for RCP2.6 implied by PCTs & SETs
                                        2                                                                                     0.7
Contribution to peak T from PCT (°C)




                                                                                       Contribution to peak T from SET (°C)
                                       1.8
                                                                                                                              0.6
                                       1.6
                                       1.4                                                                                    0.5
                                       1.2                                                                                    0.4
                                        1
                                       0.8                                                                                    0.3
                                       0.6                                                                                    0.2
                                       0.4
                                                                                                                              0.1
                                       0.2
                                        0                                                                                     0.0
                                         2000      2020   2040   2060    2080   2100                                            2000      2020   2040    2060    2080     2100
                                                             Year                                                                                   Year
                                             Fossil CO2   Other CO2     N2O                                                         CH4          HFC32          HFC43_10
                                             CF4          C2F6          C6F14                                                       HFC125       HFC134a        HFC143a
                                             HFC23        SF6                                                                       HFC227ea     HFC245fa
Comparison with realised ΔT
                                 2.0
                                 1.8
                                                                                        Total SET
  ΔT (°C above pre-industrial)




                                 1.6
                                 1.4
                                 1.2                                                    Total PCT
                                 1.0
                                 0.8                                                    RCP2.6 all
                                 0.6
                                 0.4                                                    RCP2.6
                                 0.2                                                    GHGs only
                                 0.0
                                       2000   2020   2040          2060   2080   2100
                                                            Year
Conclusions
• For the 2°C limit GHGs could be split into two baskets:
   – ‘long-lived’: committed ΔTmax = PCTx × ΣEx
   – ‘shorter-lived’: future ΔTmax (if sustained) = SETx × Ex

• Sum of PCTs & SETs gives a guide to size & timing of ΔTmax

• Reduces reliance on (arbitrary) time horizons

• 2°C could be met by limiting cumulative ΣECO2e for long-lived
  GHGs including N2O

• Allowable ΣECO2e depends on emissions of shorter-lived GHGs
  near time of peaking only (but near-term emissions do
  influence warming rate as well)

Mais conteúdo relacionado

Mais procurados

Continuing Evolution of New Source Review
Continuing Evolution of New Source ReviewContinuing Evolution of New Source Review
Continuing Evolution of New Source Review
All4 Inc.
 
Periodic Table Powerpoint
Periodic Table PowerpointPeriodic Table Powerpoint
Periodic Table Powerpoint
Ricky Castro
 
IOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
IOSRPHR(www.iosrphr.org) IOSR Journal of PharmacyIOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
IOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
iosrphr_editor
 

Mais procurados (10)

Junior Design Project Usf
Junior Design Project  UsfJunior Design Project  Usf
Junior Design Project Usf
 
Appdxs1 2
Appdxs1 2Appdxs1 2
Appdxs1 2
 
11 05-31-karolina
11 05-31-karolina11 05-31-karolina
11 05-31-karolina
 
Continuing Evolution of New Source Review
Continuing Evolution of New Source ReviewContinuing Evolution of New Source Review
Continuing Evolution of New Source Review
 
Periodic Table Powerpoint
Periodic Table PowerpointPeriodic Table Powerpoint
Periodic Table Powerpoint
 
CCS Projects Integration Workshop - London 3Nov11 - TCM - Project Integration
CCS Projects Integration Workshop - London 3Nov11 - TCM - Project IntegrationCCS Projects Integration Workshop - London 3Nov11 - TCM - Project Integration
CCS Projects Integration Workshop - London 3Nov11 - TCM - Project Integration
 
App1(1)
App1(1)App1(1)
App1(1)
 
Carbon dioxide, methane and nitrous oxide emissions from an oil palm plantati...
Carbon dioxide, methane and nitrous oxide emissions from an oil palm plantati...Carbon dioxide, methane and nitrous oxide emissions from an oil palm plantati...
Carbon dioxide, methane and nitrous oxide emissions from an oil palm plantati...
 
IOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
IOSRPHR(www.iosrphr.org) IOSR Journal of PharmacyIOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
IOSRPHR(www.iosrphr.org) IOSR Journal of Pharmacy
 
sec9_technical-specifications.pdf
sec9_technical-specifications.pdfsec9_technical-specifications.pdf
sec9_technical-specifications.pdf
 

Semelhante a Equivalence of GHG emissions under the 2oC limit - Steve smith et al

L-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentationL-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentation
Bernard Chung
 
ภาวะโลกร้อน
ภาวะโลกร้อนภาวะโลกร้อน
ภาวะโลกร้อน
wanlope
 

Semelhante a Equivalence of GHG emissions under the 2oC limit - Steve smith et al (20)

Ammonia production from natural gas, haldor topsoe process
Ammonia production from natural gas, haldor topsoe processAmmonia production from natural gas, haldor topsoe process
Ammonia production from natural gas, haldor topsoe process
 
ammonia National Fertilizer Limited Bathinda
ammonia National Fertilizer Limited Bathindaammonia National Fertilizer Limited Bathinda
ammonia National Fertilizer Limited Bathinda
 
L-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentationL-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentation
 
ภาวะโลกร้อน
ภาวะโลกร้อนภาวะโลกร้อน
ภาวะโลกร้อน
 
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
Phase Behaviour and EoS Modelling of the Carbon Dioxide-Hydrogen System, Mart...
 
GEOs Gas Thermal Remediation Workshop Series - Los Angeles (Nov 2014)
GEOs Gas Thermal Remediation Workshop Series - Los Angeles (Nov 2014)GEOs Gas Thermal Remediation Workshop Series - Los Angeles (Nov 2014)
GEOs Gas Thermal Remediation Workshop Series - Los Angeles (Nov 2014)
 
Agroklimatologi 7
Agroklimatologi 7Agroklimatologi 7
Agroklimatologi 7
 
sru-presentation.pptx
sru-presentation.pptxsru-presentation.pptx
sru-presentation.pptx
 
Fianl PPT Nanotechnology.ppt
Fianl PPT Nanotechnology.pptFianl PPT Nanotechnology.ppt
Fianl PPT Nanotechnology.ppt
 
nuclear power
nuclear powernuclear power
nuclear power
 
#17 Key
#17 Key#17 Key
#17 Key
 
Ammonia Plant - Methanation Operations
Ammonia Plant - Methanation OperationsAmmonia Plant - Methanation Operations
Ammonia Plant - Methanation Operations
 
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
CO2QUEST Typical Impurities in Captured CO2 Streams - Richard T. J. Porter at...
 
Natural gas sweetening using MDEA
Natural gas sweetening using MDEANatural gas sweetening using MDEA
Natural gas sweetening using MDEA
 
Selection of amine solvents for CO2 capture from natural gas power plant - pr...
Selection of amine solvents for CO2 capture from natural gas power plant - pr...Selection of amine solvents for CO2 capture from natural gas power plant - pr...
Selection of amine solvents for CO2 capture from natural gas power plant - pr...
 
Thermodynamics numericl 2016
Thermodynamics numericl 2016Thermodynamics numericl 2016
Thermodynamics numericl 2016
 
Biomass drying for combustion
Biomass drying for combustionBiomass drying for combustion
Biomass drying for combustion
 
Practicing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGAPracticing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGA
 
Dr. vora ppt chapter 2 emission formation
Dr. vora ppt chapter 2 emission formationDr. vora ppt chapter 2 emission formation
Dr. vora ppt chapter 2 emission formation
 
GEO's Presentation on In Situ Thermal Remediation to EPA Region 9
GEO's Presentation on In Situ Thermal Remediation to EPA Region 9GEO's Presentation on In Situ Thermal Remediation to EPA Region 9
GEO's Presentation on In Situ Thermal Remediation to EPA Region 9
 

Mais de Environmental Protection Agency, Ireland

Mais de Environmental Protection Agency, Ireland (20)

Webinar for Applicants - EPA Research Call 2022
Webinar for Applicants - EPA Research Call 2022Webinar for Applicants - EPA Research Call 2022
Webinar for Applicants - EPA Research Call 2022
 
EPA Water Conference 2021 Posters
EPA Water Conference 2021 PostersEPA Water Conference 2021 Posters
EPA Water Conference 2021 Posters
 
Signpost Seminar: Water quality - national problems, local solutions
Signpost Seminar: Water quality - national problems, local solutionsSignpost Seminar: Water quality - national problems, local solutions
Signpost Seminar: Water quality - national problems, local solutions
 
Dr Pete Lunn, EPA, HSE and ESRI, Environment, Health and Wellbeing Conference...
Dr Pete Lunn, EPA, HSE and ESRI, Environment, Health and Wellbeing Conference...Dr Pete Lunn, EPA, HSE and ESRI, Environment, Health and Wellbeing Conference...
Dr Pete Lunn, EPA, HSE and ESRI, Environment, Health and Wellbeing Conference...
 
Professor Dearbhaile Morris, EPA, HSE and ESRI, Environment, Health and Wellb...
Professor Dearbhaile Morris, EPA, HSE and ESRI, Environment, Health and Wellb...Professor Dearbhaile Morris, EPA, HSE and ESRI, Environment, Health and Wellb...
Professor Dearbhaile Morris, EPA, HSE and ESRI, Environment, Health and Wellb...
 
Dr Caroline Garvan, EPA, HSE and ESRI, Environment, Health and Wellbeing Conf...
Dr Caroline Garvan, EPA, HSE and ESRI, Environment, Health and Wellbeing Conf...Dr Caroline Garvan, EPA, HSE and ESRI, Environment, Health and Wellbeing Conf...
Dr Caroline Garvan, EPA, HSE and ESRI, Environment, Health and Wellbeing Conf...
 
Rosarie lynch, EPA, HSE and ESRI, Environment, Health and Wellbeing Conferenc...
Rosarie lynch, EPA, HSE and ESRI, Environment, Health and Wellbeing Conferenc...Rosarie lynch, EPA, HSE and ESRI, Environment, Health and Wellbeing Conferenc...
Rosarie lynch, EPA, HSE and ESRI, Environment, Health and Wellbeing Conferenc...
 
Martin Adams, EPA, HSE and ESRI, Environment, Health and Wellbeing Conference...
Martin Adams, EPA, HSE and ESRI, Environment, Health and Wellbeing Conference...Martin Adams, EPA, HSE and ESRI, Environment, Health and Wellbeing Conference...
Martin Adams, EPA, HSE and ESRI, Environment, Health and Wellbeing Conference...
 
Professor Michael Depledge, EPA, HSE and ESRI, Environment, Health and Wellbe...
Professor Michael Depledge, EPA, HSE and ESRI, Environment, Health and Wellbe...Professor Michael Depledge, EPA, HSE and ESRI, Environment, Health and Wellbe...
Professor Michael Depledge, EPA, HSE and ESRI, Environment, Health and Wellbe...
 
Ireland's Environment an integrated assessment 2020 - key messages
Ireland's Environment an integrated assessment 2020 - key messagesIreland's Environment an integrated assessment 2020 - key messages
Ireland's Environment an integrated assessment 2020 - key messages
 
EPA River Monitoring Fact Sheet
EPA River Monitoring Fact SheetEPA River Monitoring Fact Sheet
EPA River Monitoring Fact Sheet
 
EPA Marine Phytoplankton Fact Sheet
EPA Marine Phytoplankton Fact SheetEPA Marine Phytoplankton Fact Sheet
EPA Marine Phytoplankton Fact Sheet
 
EPA Marine Monitoring Fact Sheet
EPA Marine Monitoring Fact SheetEPA Marine Monitoring Fact Sheet
EPA Marine Monitoring Fact Sheet
 
EPA Lake Monitoring Fact Sheet
EPA Lake Monitoring Fact SheetEPA Lake Monitoring Fact Sheet
EPA Lake Monitoring Fact Sheet
 
EPA Lake Monitoring Aquatic Plants Fact Sheet
EPA Lake Monitoring Aquatic Plants Fact SheetEPA Lake Monitoring Aquatic Plants Fact Sheet
EPA Lake Monitoring Aquatic Plants Fact Sheet
 
14. Funding communities to engage in protecting waters - Fran Igoe, LAWPRO
14. Funding communities to engage in protecting waters - Fran Igoe, LAWPRO14. Funding communities to engage in protecting waters - Fran Igoe, LAWPRO
14. Funding communities to engage in protecting waters - Fran Igoe, LAWPRO
 
13. The BRIDE project: working for multiple benefits - Donal Sheehan, BRIDE P...
13. The BRIDE project: working for multiple benefits - Donal Sheehan, BRIDE P...13. The BRIDE project: working for multiple benefits - Donal Sheehan, BRIDE P...
13. The BRIDE project: working for multiple benefits - Donal Sheehan, BRIDE P...
 
12. Working with local communities to protect the Maigue - Tom Harrington, Ma...
12. Working with local communities to protect the Maigue - Tom Harrington, Ma...12. Working with local communities to protect the Maigue - Tom Harrington, Ma...
12. Working with local communities to protect the Maigue - Tom Harrington, Ma...
 
11. CatchmentCARE: improving water quality in cross-border catchments - Con M...
11. CatchmentCARE: improving water quality in cross-border catchments - Con M...11. CatchmentCARE: improving water quality in cross-border catchments - Con M...
11. CatchmentCARE: improving water quality in cross-border catchments - Con M...
 
10. Restoring the River Camac - Mary-Liz Walshe, DCC
10. Restoring the River Camac - Mary-Liz Walshe, DCC10. Restoring the River Camac - Mary-Liz Walshe, DCC
10. Restoring the River Camac - Mary-Liz Walshe, DCC
 

Último

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Último (20)

Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot ModelMcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
Mcleodganj Call Girls 🥰 8617370543 Service Offer VIP Hot Model
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Vector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptxVector Search -An Introduction in Oracle Database 23ai.pptx
Vector Search -An Introduction in Oracle Database 23ai.pptx
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 

Equivalence of GHG emissions under the 2oC limit - Steve smith et al

  • 1. Equivalence of GHG emissions under the 2°C limit Steve Smith1, 2 Jason Lowe2 Laila Gohar2 1UKCommittee on Climate Change 2Met Office Hadley Centre
  • 2. Motivation • Internationally agreed policy goal: ΔTmax < 2°C • Climate policies are multi-gas, but only weakly linked to ΔTmax via the GWP100 • CO2-only studies show ΔTmax is constrained by total emissions over time (ΣECO2) 1 • GTP measures ΔT, but still relies on time horizon and doesn’t signal need to limit ΣECO2 • So how might ΣECO2 fit into a multi-gas emissions policy? 1 Allen et al. (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature Matthews et al. (2009) The proportionality of global warming to cumulative carbon emissions, Nature
  • 3. Hypothesis • On timescales relevant to 2°C, GHGs can be divided into two baskets: – ‘long-lived’: ΔTmax  ΣE – ‘shorter-lived’: ΔTmax  Esustained • Does this give a reliable prediction for ΔTmax? • Where is the dividing line?
  • 4. Experimental setup MAGICC v5.3 RCP2.6 background forcings
  • 5. Defining long- and shorter-lived GHGs 1 HFC-32 (4.9yr) HFC-227ea (34.2yr) CH4 (12yr) HFC-125 (29yr) HFC-143a (52yr) 0.95 r2 (ΔTmax, Epeak) HFE-125 (136yr) N2O (114yr) 0.9 SF6 (3,200yr) CO2 0.85 0.85 0.9 0.95 1 r2 (ΔTmax, ƩE)
  • 6. ΔTmax vs. ΣE for long-lived GHGs 5 1 CO2 N2O (114yr) Peak warming (°C) Peak warming (°C) 4 0.8 3 0.6 2 0.4 1 0.2 0 0 0 1000 2000 3000 0 2000 4000 6000 Total emissions 2000-2400 (GtC) Total emissions 2000-2400 (MtN) 0.05 SF6 (3,200yr) Peak warming (°C) 0.04 0.03 0.02 ΔTmax = (PCTx )ΣE x 0.01 0 0 500 1000 1500 2000 2500 Total emissions 2000-2400 (kt)
  • 7. Peak Commitment Temperatures Species Lifetime (yr) PCT (°C/kg) CO2e CO2 - 4.32E-16 1 N2O 114 1.33E-13 309 HFC-23 270 7.43E-12 17200 HFC-236fa 240 4.83E-12 11200 SF6 3200 1.73E-11 40100 NF3 740 1.11E-11 25600 CF4 50000 6.01E-12 13900 C2 F 6 10000 9.73E-12 22500 C3 F 8 2600 6.31E-12 14600 c-C4F8 3200 7.53E-12 17400 C4F10 2600 6.37E-12 14700 C5F12 4100 6.86E-12 15900 C6F14 3200 6.68E-12 15500 C10F18 >1000 ≥4.83E-12 ≥12100 SF5CF3 800 1.11E-11 25700 HFE-125 136 6.68E-12 15400 PFPMIE 800 6.42E-12 14900
  • 8. ΔTmax vs. Esustained for shorter-lived GHGs dΔT (t ) τ = λΔRF(t ) - ΔT (t ) dt For sustained emissions: ΔTmax = ΔT (∞ ) sustained = λαx Ax E x sustained ΔTmax = (SETx )E x where: λ = climate sensitivity parameter αx = atmospheric lifetime of gas x Ax = radiative efficiency of gas x
  • 9. Sustained Emission Temperatures Species Lifetime (yr) Radiative efficiency (Wm-2ppb-1) SET (°Ckg-1yr) * CH4e CH4† 12 3.70E-04 1.74E-12 1 HFC-32 4.9 0.11 4.66E-11 27 HFC-125 29 0.23 2.50E-10 144 HFC-134a 14 0.16 9.88E-11 57 HFC-143a 52 0.13 3.62E-10 208 HFC-152a 1.4 0.09 8.58E-12 5 HFC-227ea 34.2 0.26 2.35E-10 135 HFC-245fa 7.6 0.28 7.14E-11 41 HFC-365mfc 8.6 0.21 5.49E-11 32 HFC-43-10mee 15.9 0.4 1.14E-10 65 HFE-134 26 0.45 4.46E-10 256 HFE-143a 4.3 0.27 5.22E-11 30 HCFE-235da2 2.6 0.38 2.41E-11 14 HFE-245cb2 5.1 0.32 5.56E-11 32 HFE-245fa2 4.9 0.31 4.54E-11 26 * Values calculated for λ=0.8K(Wm-2)-1 † CH4 SET includes OH lifetime enhancement and indirect O3 & stratospheric H2O effects
  • 10. ΔT for RCP2.6 implied by PCTs & SETs 2 0.7 Contribution to peak T from PCT (°C) Contribution to peak T from SET (°C) 1.8 0.6 1.6 1.4 0.5 1.2 0.4 1 0.8 0.3 0.6 0.2 0.4 0.1 0.2 0 0.0 2000 2020 2040 2060 2080 2100 2000 2020 2040 2060 2080 2100 Year Year Fossil CO2 Other CO2 N2O CH4 HFC32 HFC43_10 CF4 C2F6 C6F14 HFC125 HFC134a HFC143a HFC23 SF6 HFC227ea HFC245fa
  • 11. Comparison with realised ΔT 2.0 1.8 Total SET ΔT (°C above pre-industrial) 1.6 1.4 1.2 Total PCT 1.0 0.8 RCP2.6 all 0.6 0.4 RCP2.6 0.2 GHGs only 0.0 2000 2020 2040 2060 2080 2100 Year
  • 12. Conclusions • For the 2°C limit GHGs could be split into two baskets: – ‘long-lived’: committed ΔTmax = PCTx × ΣEx – ‘shorter-lived’: future ΔTmax (if sustained) = SETx × Ex • Sum of PCTs & SETs gives a guide to size & timing of ΔTmax • Reduces reliance on (arbitrary) time horizons • 2°C could be met by limiting cumulative ΣECO2e for long-lived GHGs including N2O • Allowable ΣECO2e depends on emissions of shorter-lived GHGs near time of peaking only (but near-term emissions do influence warming rate as well)