SlideShare a Scribd company logo
1 of 43
Download to read offline
Falsifying Paradigms
           for Cosmic Acceleration
            Dragan Huterer (University of Michigan)




Mortonson, Hu & Huterer:
PRD, 79, 023004 (2009) - method, and future data
PRD, 80, 067301 (2009) - hiding DE transitions at low z
PRD, 81, 063007 (2010) - current data
                                                          This
PRD, 82, 063004 (2010) - Figures of Merit                 talk
PRD, 81, 023015 (2011) - ‘Pink Elephant’ clusters
1
                                   always accelerates


          0.5                                     accelerates now
! (m-M)




                                                decelerates in the past

           0
                                                         open
                                               flat
     -0.5
                always decelerates          closed
            0            0.5               1               1.5                2
                                     Redshift z
                            Using Union2 SN data (Amanullah et al 2010) binned in redshift
ρDE (z) = ΩDE ρcrit (1 + z)3(1+w)
Underlying Philosophy

• The data are now consistent with LCDM, but that may
  change.

• So, what observational strategies do we use to determine
  which violation of Occam’s Razor has the nature served us?

• Possible alternatives: w(z) ≠ -1, early DE, curvature ≠ 0,
  modified gravity, more than one of the above (?!)

• Goal: to calculate predicted ranges in fundamental
  cosmological functions D(z), H(z), G(z), (and any other
  parameters/functions of interest), given current or future
  observations

• ... and therefore to provide ‘target’ quantities/redshifts for
  ruling out classes of DE models with upcoming data
  (BigBOSS, DES, LSST, space mission, ..........)
DE Models and their complexity
                (-5≤w(z)≤3)



                (-1≤w(z)≤1)
Modeling of DE
Modeling of low-z w(z):
Principal Components




                            500 bins (so 500 PCs)
                            0.03<z<1.7

                            We use first ~10 PCs;
                            (results converge 10→15)




                            Fit of a quintessence
                              model with PCs
Modeling of Early DE
(de Putter & Linder 2008)                                     3(1+w∞ )
                                                     1+z
ρDE (z  zmax ) = ρDE (zmax )
                                                   1 + zmax
 Early DE - current constraints
•ΩDE(zrec) 0.03 (CMB peaks; Doran, Robbers  Wetterich 2007)
•ΩDE(zBBN)0.05 (BBN; Bean, Hansen  Melchiorri 2001)

      Modeling of Modified Gravity
(Linder 2005)
                               a                         
           G(a) = exp                d ln a [Ωγ (a ) − 1]
                                               M
                             0

Advantage: γ≈0.55 for any GR model (small corrections for w(z)≠-1)
Advantage: extremely easy to implement
Disadvantage: actual MG growth may be scale-dependent
Methodology
 1. Start with the parameter set:
  ΩM , ΩK , H0 , w(z), w∞

2. Use either the current data or future data

3. Employ the likelihood machine
Markov Chain Monte Carlo likelihood calculation,
between ~2 and ~15 parameters constrained


4. Compute predictions for D(z), G(z), H(z) (and γ(z), f(z))
Cosmological Functions

Expansion Rate (BAO):
                                                     1/2
                                ρDE (z)
     H(z) = H0 ΩM (1 + z) + ΩDE
                         3
                                        + ΩK (1 + z)2
                                ρDE (0)

Distance (SN, BAO, CMB):                              
                                            z
                    1                           dz 
       D(z) =               S (|ΩK |H0 )
                      2 )1/2 K
                                     2 1/2
              (|ΩK |H0                      0  H(z  )

Growth (WL, clusters):
                                              
                 H    
                                     H 
                                          3
          G + 4+
           
                              G + 3+
                               
                                         − ΩM (z) G = 0
                 H                   H    2

         G = D1 /a
Cosmological Functions
Structure of graphs to follow
                      !#$%'%()*+,(-+.%*'/)#*
 Prediction on observable
 (given data) by SNe+CMB         Pivot
(around fiducial, or best-fit)




                                         Max extent of
                                           SN data


                                           Sketch by M. Mortonson
Structure of graphs to follow
   !#$%'%()*+,(-+.%*'/)#*




                      Sketch by M. Mortonson
Predictions from Future Data
Assumed “data”:
1. SNAP 2000 SNe, 0.1z1.7
   (plus 300 low-z SNe);
   converted into distances
2. Planck info on Ωmh2 and DA(zrec)
                                                                                 2 
                                               0.1         0.15
                                                              2
                                                                              1+z
                                  2
                                 σα   =                         + 0.022
                                              ∆zsub                            2.7
        Dead             Alive                              Nα




                                                 Predictions below shown
                                                          around:
                                                      fiducial model
a
     e dat
Futur
    LCDM predictions
     (flat or curved)
         Grey: flat
         Blue: curved


D, G to 1% everywhere
H(z=1) to 0.1% for flat LCDM
a
     e dat
Futur   Quintessence
       predictions (flat)

     Grey: no Early DE
     Blue: with Early DE



    Smoking Gun of EDE:
    Uniform suppression in G
a
     e dat
 utur
F      Quintessence
    predictions (no EDE)
      Grey: flat
      Blue: curved




    Smoking Gun of curvature:
    1. Shift in G0
    2. Negative const offset in D
a
     e dat
 utur
F         Quintessence
           predictions
with curvature and EDE

     Smoking Gun:
     Large negative deviation in G




     Note even in this general class,
         firm predictions: e.g.,
    G and D can’t be  LCDM value
Smooth DE with curvature and/or Early DE

                             Some quantities
                         are accurately predicted
                       even in very general classes
                              of DE models
                        (e.g. specific linear combination of G0
                          and G evaluated at z=1 vs z=zmax)
Predictions from Current Data


- SN Union compilation
- Full WMAP power spectrum
- DBAO(z=0.35) to ~3% from SDSS (adding 2dF ⇒ little diff)
- H0 from SHOES (Riess et al): (74±3.6) km/s/Mpc; apply at z=0.04




           Predictions below shown around:
                 best-fit LCDM model
Current LCDM
(flat, no early DE)
    predictions
urr
     ent    LCDM predictions - flat or curved
C      a
   dat

 Growth                                         Growth
to z=1000                                       to z=0




Distance                                          f×G




 Hubble                                     Growth index
parameter
urr
      ent   Quintessence predictions (flat, no Early DE)
C
   d ata
What current data (SN, mostly) prefer


                        best-fit
                                        best-fit
                     w(z) (QCDM)
                                        ΛCDM




                                    best-fit
                                     w0-wa
From current data, projected down on ΩM-σ8




                   ΩK=0
                 (68% CL)
From current and future data,
   projected down on w0-wa




            ΩK=0
          (68% CL)
In principal, constraints are good...
     (components)
                    values for example
  Top row:          quintessence model
Current Data




 Bottom Row:
Future Data                              Flat
(assumes αi=0)                           Curved
Figures of Merit (FoMs)
The most common choice:
area of the (95%) ellipse in the w0-wa plane
(DETF report 2006, Huterer  Turner 2001)


                                                             6.17π
                              FoM ≡ (det Cw0 wa )   −1/2
                                                           ≈
wa        95% C.L.                                            A95


                                               Or, simply:
                                                         1
                                            FoM ≡
                                                  σwpivot × σwa


                                   w0
Generalizing FoM to many parameters - PCs of w(z)
                               −1/2
                   det Cn
FoM(PC)
   n      ≡           (prior)
                  det Cn
(proportional to volume
   of n-dim ellipsoid)




                                        Future/current ratio
Falsifying LCDM and Quintessence
                              with “pink elephant” clusters

                         56 30
                                                                                                Pink Elephant:
                                                                                                - any of various visual
                                                                                                hallucinations sometimes
                            00




                                                                                                experienced as a
Declination (2000)




                         57 30

                                                                                                withdrawal symptom
                            00                                                                  after sustained alcoholic
                                                                                                drinking.
                         58 30



                                                                                                -Dictionary.com
                                                                                  0.1 h-1 Mpc
                                                                                       70


                                                                                   z = 1.393


                     -25! 59 00
                                  26s   24s     22s         20s        18s   22h 35m 16s
                                              Right Ascension (2000)




                     Mortonson, Hu  Huterer: arXiv:1004.0236
Cluster number counts: basics
       mass function;
calibrated from simulations                                    = dV / (dΩdz); exactly
     to ~10% accuracy                                            predictable given
                                                               a cosmological model
   d2 N        r(z)2
        = n(z)
  dΩ dz        H(z)                                    5                          ΩM=1, ΩDE=0
                                                  10
                                                                   w=-0.8


                              dN/dz (4000 deg )
                              2                   10
                                                       4




   observed
                                                       3
                                                  10
                                                                            ΩM=0.3, ΩDE=0.7, w=-1

                                                       2
                                                  10

                                                           0     0.5        1          1.5          2
                                                                            z

  • Essentially fully in the nonlinear regime (scales ~few Mpc)
Pink elephant, candidate 1:
                    SPT-CL J0546-5345
Brodwin et al, arXiv:1006.5639               optical (grz); contours are SZ        optical (ri)+IRAC; contours are X-ray




     z=1.067
M ≈ (8±1)·1014 Msun


                       SPT-CL J0546-5345: A Massive z  1 Galaxy Cluster Selected Via the SZE                              7

                                                        TABLE 2
                                  Comparison of Mass Measurements for SPT-CL J0546-5345

                                                                            Mass Scaling                  M200 a,b
         Mass Type        Proxy        Measurement      Units                Relation                    (1014 M )
                                                                                                               +6.1
         Dispersion   Biweight          1179 +232
                                             −167        km/s      σ–M200 (Evrard et al. 2008)            10.4 −4.4
                      Gapper            1170 +240
                                             −128        km/s      σ–M200 (Evrard et al. 2008)             10.1 +6.2
                                                                                                                −3.3
                      Std Deviation     1138 +205
                                             −132        km/s      σ–M200 (Evrard et al. 2008)              9.3 +5.0
                                                                                                                −3.2
         X-ray        YX                5.3 ± 1.0    ×1014 M keV   YX –M500 (Vikhlinin et al. 2009)      8.23 ± 1.21
                      TX                 7.5 +1.7
                                             −1.1         keV      TX –M500 (Vikhlinin et al. 2009)       8.11 ± 1.89
         SZE          YSZ               3.5 ± 0.6    ×1014 M keV   YSZ – M500 (A10)                      7.19 ± 1.51
                      S/N at 150 GHz       7.69                    ξ – M500 (V10)                     5.03 ± 1.13 ± 0.77
         Richness     N200               80 ± 31       galaxies    N200 – M200 (H10)                   8.5 ± 5.7 ± 2.5
                      Ngal                66 ± 7       galaxies    Ngal – M200 (H10)                    9.2 ± 4.9 ± 2.7

         Best         Combined                                                                         7.95 ± 0.92
Pink elephant, candidate 2:
                XMMU J2235.3-2557
 Mullis et al, 2005
 Jee et al. 2008
                                               56 30

          z=1.39
Mx-ray ≈ (7.7±4)·1014 Msun                        00

MWL ≈ (8.5±1.7)·1014 Msun
                      Declination (2000)
                                               57 30




                                                  00




                                               58 30

                                                                                                        0.1 h-1 Mpc
                                                                                                             70


                                                                                                         z = 1.393


                                           -25! 59 00
                                                        26s   24s     22s         20s        18s   22h 35m 16s
                                                                    Right Ascension (2000)
Pink elephant, candidate 3:
            SPT-CL J2106-5844
             z=1.132
                                           Foley et al 2011
MSZ+x-ray ≈ (1.27±0.21)·1015 Msun          Williamson et al. 2011
  4                         Foley et al.
Two sources of statistical uncertainty


 1. Sample variance - the Poisson noise in
 counting rare objects in a finite volume

 2. Parameter variance - uncertainty due
 to fact that current data allow cosmological
 parameters to take a range of values
Parameter variance
                (due to uncertainty in cosmo parameters)



   95% sample
variance limit for
seeing ≥1 clusters
 (and for fsky=1)
Predicted abundance for
      M  10 15h-1 M
                    sun, z  1.48




                                 95% sample variance
                                    limit for fsky=1




                                 95% parameter variance
                                           limit
                                      (in each case)




Rule out ΛCDM ⇒ automatically rule out quintessence
Eddington bias
                                                        A.S. Eddington, MNRAS, 1913

          For a steeply falling mass function,
   observed mass was more likely to be scattered into
    observed range from lower M than for higher M
(≠ Malmquist bias: more luminous objects are more likely to scatter into the sample)


    dn/dlnM                                  Δ ln(M) = (γ/2) σlnM2


                                                                  log slope of MF
                                      Mobs±ΔMobs




                                                            dlnM
Results for the two pink elephant clusters vs.
            predictions for LCDM

                                          Shown limits:
                                            95% both
                                           sample and
                                            parameter
                                             variance




                                        black error bars:
                                             masses
                                          corrected for
                                        Eddington bias
Systematic effects
Cluster mass       SN light-curve fitter (Lambda)




MF normalization    SN light-curve fitter (Quint)
Potentially useful product of paper:

    Fitting formulae to evaluate Nclusters that rule
                out LCDM at a given

✓ mass and redshift
                                   e.g. Williamson et al. 2011
✓ sample variance confidence                  (SPT)
✓ parameter variance confidence
✓ fsky
Conclusions I: Falsifying DE
• Current (and, esp, future) data lead to strong
  predictions for D(z), G(z), H(z)
• Examples:
  • Flat LCDM: H(z=1) to 0.1%, D(z), G(z) to
     1% everywhere
  • Quint: D(z), G(z) to 5%; one-sided
     deviations
  • Smooth DE: tight consistency relations can
     still be found

  • GR tests:     to 5% (~0.02) even with
     arbitrary w(z)
• Total FoM=det(Cov)   -1/2   improvement of 100
  in the future
• it’s wise to keep eyes open for mode exotic DE
  (and measuring PCs 3, 4, 5, 6...)
Conclusions II: ‘Pink Elephants’
• It’s important to be careful about the various statistical,
  not just systematic, effects in analyzing the abundance of
  rare, massive and distant clusters

• In particular, we find that the following effects have
  major effect on their likelihood

  • Parameter variance (in addition to sample variance)
  • Fair assessment of f  sky

  • Eddington bias
• So far none of the detected clusters rules out any models
  (contrary to some claims in the literature)

• If an unusually massive/distant observed cluster observed
  tomorrow rules out LCDM, it will rule out quintessence at
  the same time

More Related Content

What's hot

DISTINGUISH BETWEEN WALSH TRANSFORM AND HAAR TRANSFORMDip transforms
DISTINGUISH BETWEEN WALSH TRANSFORM AND HAAR TRANSFORMDip transformsDISTINGUISH BETWEEN WALSH TRANSFORM AND HAAR TRANSFORMDip transforms
DISTINGUISH BETWEEN WALSH TRANSFORM AND HAAR TRANSFORMDip transformsNITHIN KALLE PALLY
 
23 industrial engineering
23 industrial engineering23 industrial engineering
23 industrial engineeringmloeb825
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
Capítulo 37 (5th edition)con soluciones interferencia de ondas luminosas
Capítulo 37 (5th edition)con soluciones  interferencia de ondas luminosasCapítulo 37 (5th edition)con soluciones  interferencia de ondas luminosas
Capítulo 37 (5th edition)con soluciones interferencia de ondas luminosas.. ..
 
Image trnsformations
Image trnsformationsImage trnsformations
Image trnsformationsJohn Williams
 
Lecture 12 (Image transformation)
Lecture 12 (Image transformation)Lecture 12 (Image transformation)
Lecture 12 (Image transformation)VARUN KUMAR
 
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacionCapítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion.. ..
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles SlidesMatthew Leingang
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsMatthew Leingang
 
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ..... ..
 
Lecture 2: linear SVM in the Dual
Lecture 2: linear SVM in the DualLecture 2: linear SVM in the Dual
Lecture 2: linear SVM in the DualStéphane Canu
 
The multilayer perceptron
The multilayer perceptronThe multilayer perceptron
The multilayer perceptronESCOM
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 
Lecture9 multi kernel_svm
Lecture9 multi kernel_svmLecture9 multi kernel_svm
Lecture9 multi kernel_svmStéphane Canu
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsGabriel Peyré
 
ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...
ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...
ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...홍배 김
 

What's hot (20)

DISTINGUISH BETWEEN WALSH TRANSFORM AND HAAR TRANSFORMDip transforms
DISTINGUISH BETWEEN WALSH TRANSFORM AND HAAR TRANSFORMDip transformsDISTINGUISH BETWEEN WALSH TRANSFORM AND HAAR TRANSFORMDip transforms
DISTINGUISH BETWEEN WALSH TRANSFORM AND HAAR TRANSFORMDip transforms
 
03 image transform
03 image transform03 image transform
03 image transform
 
23 industrial engineering
23 industrial engineering23 industrial engineering
23 industrial engineering
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Capítulo 37 (5th edition)con soluciones interferencia de ondas luminosas
Capítulo 37 (5th edition)con soluciones  interferencia de ondas luminosasCapítulo 37 (5th edition)con soluciones  interferencia de ondas luminosas
Capítulo 37 (5th edition)con soluciones interferencia de ondas luminosas
 
Image trnsformations
Image trnsformationsImage trnsformations
Image trnsformations
 
Lecture 12 (Image transformation)
Lecture 12 (Image transformation)Lecture 12 (Image transformation)
Lecture 12 (Image transformation)
 
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacionCapítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 
Lesson18 Double Integrals Over Rectangles Slides
Lesson18   Double Integrals Over Rectangles SlidesLesson18   Double Integrals Over Rectangles Slides
Lesson18 Double Integrals Over Rectangles Slides
 
Lesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General RegionsLesson 19: Double Integrals over General Regions
Lesson 19: Double Integrals over General Regions
 
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
 
Ism et chapter_12
Ism et chapter_12Ism et chapter_12
Ism et chapter_12
 
Lecture 2: linear SVM in the Dual
Lecture 2: linear SVM in the DualLecture 2: linear SVM in the Dual
Lecture 2: linear SVM in the Dual
 
The multilayer perceptron
The multilayer perceptronThe multilayer perceptron
The multilayer perceptron
 
Fdtd
FdtdFdtd
Fdtd
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Lecture9 multi kernel_svm
Lecture9 multi kernel_svmLecture9 multi kernel_svm
Lecture9 multi kernel_svm
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...
ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...
ARCHITECTURAL CONDITIONING FOR DISENTANGLEMENT OF OBJECT IDENTITY AND POSTURE...
 

Similar to Falsifying Cosmic Acceleration Models with Galaxy Clusters

L. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceL. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceSEENET-MTP
 
3 grechnikov
3 grechnikov3 grechnikov
3 grechnikovYandex
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Dataswissnex San Francisco
 
E6 GUT Model and the Higgs boson search
E6 GUT Model and the Higgs boson searchE6 GUT Model and the Higgs boson search
E6 GUT Model and the Higgs boson searchkneemo
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas EberleBigMC
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
Computational electromagnetics
Computational electromagneticsComputational electromagnetics
Computational electromagneticsSpringer
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...SEENET-MTP
 
Continuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDContinuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDValentin De Bortoli
 
2007 EuRad Conference: Speech on Rough Layers (odp)
2007 EuRad Conference: Speech on Rough Layers (odp)2007 EuRad Conference: Speech on Rough Layers (odp)
2007 EuRad Conference: Speech on Rough Layers (odp)Nicolas Pinel
 
Example determining the tl length
Example determining the tl lengthExample determining the tl length
Example determining the tl lengthRahul Vyas
 
2007 EuRad Conference: Speech on Rough Layers (ppt)
2007 EuRad Conference: Speech on Rough Layers (ppt)2007 EuRad Conference: Speech on Rough Layers (ppt)
2007 EuRad Conference: Speech on Rough Layers (ppt)Nicolas Pinel
 
Vector Distance Transform Maps for Autonomous Mobile Robot Navigation
Vector Distance Transform Maps for Autonomous Mobile Robot NavigationVector Distance Transform Maps for Autonomous Mobile Robot Navigation
Vector Distance Transform Maps for Autonomous Mobile Robot NavigationJanindu Arukgoda
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxAryanMishra860130
 

Similar to Falsifying Cosmic Acceleration Models with Galaxy Clusters (20)

L. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological QuintessenceL. Perivolaropoulos, Topological Quintessence
L. Perivolaropoulos, Topological Quintessence
 
3 grechnikov
3 grechnikov3 grechnikov
3 grechnikov
 
Distilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental DataDistilling Free-Form Natural Laws from Experimental Data
Distilling Free-Form Natural Laws from Experimental Data
 
Lecture4
Lecture4Lecture4
Lecture4
 
E6 GUT Model and the Higgs boson search
E6 GUT Model and the Higgs boson searchE6 GUT Model and the Higgs boson search
E6 GUT Model and the Higgs boson search
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Computational electromagnetics
Computational electromagneticsComputational electromagnetics
Computational electromagnetics
 
Cutoff frequency
Cutoff frequencyCutoff frequency
Cutoff frequency
 
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
G. Martinelli - From the Standard Model to Dark Matter and beyond: Symmetries...
 
Continuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGDContinuous and Discrete-Time Analysis of SGD
Continuous and Discrete-Time Analysis of SGD
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
Z transform
 Z transform Z transform
Z transform
 
2007 EuRad Conference: Speech on Rough Layers (odp)
2007 EuRad Conference: Speech on Rough Layers (odp)2007 EuRad Conference: Speech on Rough Layers (odp)
2007 EuRad Conference: Speech on Rough Layers (odp)
 
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
CLIM Fall 2017 Course: Statistics for Climate Research, Nonstationary Covaria...
 
Example determining the tl length
Example determining the tl lengthExample determining the tl length
Example determining the tl length
 
2007 EuRad Conference: Speech on Rough Layers (ppt)
2007 EuRad Conference: Speech on Rough Layers (ppt)2007 EuRad Conference: Speech on Rough Layers (ppt)
2007 EuRad Conference: Speech on Rough Layers (ppt)
 
Vector Distance Transform Maps for Autonomous Mobile Robot Navigation
Vector Distance Transform Maps for Autonomous Mobile Robot NavigationVector Distance Transform Maps for Autonomous Mobile Robot Navigation
Vector Distance Transform Maps for Autonomous Mobile Robot Navigation
 
P2P Supernodes
P2P SupernodesP2P Supernodes
P2P Supernodes
 
Last+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptxLast+minute+revision(+Final)+(1) (1).pptx
Last+minute+revision(+Final)+(1) (1).pptx
 

More from CosmoAIMS Bassett

Mauritius Big Data and Machine Learning JEDI workshop
Mauritius Big Data and Machine Learning JEDI workshopMauritius Big Data and Machine Learning JEDI workshop
Mauritius Big Data and Machine Learning JEDI workshopCosmoAIMS Bassett
 
Testing dark energy as a function of scale
Testing dark energy as a function of scaleTesting dark energy as a function of scale
Testing dark energy as a function of scaleCosmoAIMS Bassett
 
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013CosmoAIMS Bassett
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm lineCosmoAIMS Bassett
 
Tuning your radio to the cosmic dawn
Tuning your radio to the cosmic dawnTuning your radio to the cosmic dawn
Tuning your radio to the cosmic dawnCosmoAIMS Bassett
 
A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...CosmoAIMS Bassett
 
Decomposing Profiles of SDSS Galaxies
Decomposing Profiles of SDSS GalaxiesDecomposing Profiles of SDSS Galaxies
Decomposing Profiles of SDSS GalaxiesCosmoAIMS Bassett
 
Cluster abundances and clustering Can theory step up to precision cosmology?
Cluster abundances and clustering Can theory step up to precision cosmology?Cluster abundances and clustering Can theory step up to precision cosmology?
Cluster abundances and clustering Can theory step up to precision cosmology?CosmoAIMS Bassett
 
An Overview of Gravitational Lensing
An Overview of Gravitational LensingAn Overview of Gravitational Lensing
An Overview of Gravitational LensingCosmoAIMS Bassett
 
Testing cosmology with galaxy clusters, the CMB and galaxy clustering
Testing cosmology with galaxy clusters, the CMB and galaxy clusteringTesting cosmology with galaxy clusters, the CMB and galaxy clustering
Testing cosmology with galaxy clusters, the CMB and galaxy clusteringCosmoAIMS Bassett
 
Galaxy Formation: An Overview
Galaxy Formation: An OverviewGalaxy Formation: An Overview
Galaxy Formation: An OverviewCosmoAIMS Bassett
 
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio DataSpit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio DataCosmoAIMS Bassett
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationCosmoAIMS Bassett
 
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?CosmoAIMS Bassett
 
Binary pulsars as tools to study gravity
Binary pulsars as tools to study gravityBinary pulsars as tools to study gravity
Binary pulsars as tools to study gravityCosmoAIMS Bassett
 
Cross Matching EUCLID and SKA using the Likelihood Ratio
Cross Matching EUCLID and SKA using the Likelihood RatioCross Matching EUCLID and SKA using the Likelihood Ratio
Cross Matching EUCLID and SKA using the Likelihood RatioCosmoAIMS Bassett
 
Machine Learning Challenges in Astronomy
Machine Learning Challenges in AstronomyMachine Learning Challenges in Astronomy
Machine Learning Challenges in AstronomyCosmoAIMS Bassett
 

More from CosmoAIMS Bassett (20)

Machine learning clustering
Machine learning clusteringMachine learning clustering
Machine learning clustering
 
Mauritius Big Data and Machine Learning JEDI workshop
Mauritius Big Data and Machine Learning JEDI workshopMauritius Big Data and Machine Learning JEDI workshop
Mauritius Big Data and Machine Learning JEDI workshop
 
Testing dark energy as a function of scale
Testing dark energy as a function of scaleTesting dark energy as a function of scale
Testing dark energy as a function of scale
 
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
Seminar by Prof Bruce Bassett at IAP, Paris, October 2013
 
Cosmology with the 21cm line
Cosmology with the 21cm lineCosmology with the 21cm line
Cosmology with the 21cm line
 
Tuning your radio to the cosmic dawn
Tuning your radio to the cosmic dawnTuning your radio to the cosmic dawn
Tuning your radio to the cosmic dawn
 
A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...A short introduction to massive gravity... or ... Can one give a mass to the ...
A short introduction to massive gravity... or ... Can one give a mass to the ...
 
Decomposing Profiles of SDSS Galaxies
Decomposing Profiles of SDSS GalaxiesDecomposing Profiles of SDSS Galaxies
Decomposing Profiles of SDSS Galaxies
 
Cluster abundances and clustering Can theory step up to precision cosmology?
Cluster abundances and clustering Can theory step up to precision cosmology?Cluster abundances and clustering Can theory step up to precision cosmology?
Cluster abundances and clustering Can theory step up to precision cosmology?
 
An Overview of Gravitational Lensing
An Overview of Gravitational LensingAn Overview of Gravitational Lensing
An Overview of Gravitational Lensing
 
Testing cosmology with galaxy clusters, the CMB and galaxy clustering
Testing cosmology with galaxy clusters, the CMB and galaxy clusteringTesting cosmology with galaxy clusters, the CMB and galaxy clustering
Testing cosmology with galaxy clusters, the CMB and galaxy clustering
 
Galaxy Formation: An Overview
Galaxy Formation: An OverviewGalaxy Formation: An Overview
Galaxy Formation: An Overview
 
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio DataSpit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
Spit, Duct Tape, Baling Wire & Oral Tradition: Dealing With Radio Data
 
MeerKAT: an overview
MeerKAT: an overviewMeerKAT: an overview
MeerKAT: an overview
 
Casa cookbook for KAT 7
Casa cookbook for KAT 7Casa cookbook for KAT 7
Casa cookbook for KAT 7
 
From Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological ReionizationFrom Darkness, Light: Computing Cosmological Reionization
From Darkness, Light: Computing Cosmological Reionization
 
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
WHAT CAN WE DEDUCE FROM STUDIES OF NEARBY GALAXY POPULATIONS?
 
Binary pulsars as tools to study gravity
Binary pulsars as tools to study gravityBinary pulsars as tools to study gravity
Binary pulsars as tools to study gravity
 
Cross Matching EUCLID and SKA using the Likelihood Ratio
Cross Matching EUCLID and SKA using the Likelihood RatioCross Matching EUCLID and SKA using the Likelihood Ratio
Cross Matching EUCLID and SKA using the Likelihood Ratio
 
Machine Learning Challenges in Astronomy
Machine Learning Challenges in AstronomyMachine Learning Challenges in Astronomy
Machine Learning Challenges in Astronomy
 

Falsifying Cosmic Acceleration Models with Galaxy Clusters

  • 1. Falsifying Paradigms for Cosmic Acceleration Dragan Huterer (University of Michigan) Mortonson, Hu & Huterer: PRD, 79, 023004 (2009) - method, and future data PRD, 80, 067301 (2009) - hiding DE transitions at low z PRD, 81, 063007 (2010) - current data This PRD, 82, 063004 (2010) - Figures of Merit talk PRD, 81, 023015 (2011) - ‘Pink Elephant’ clusters
  • 2.
  • 3. 1 always accelerates 0.5 accelerates now ! (m-M) decelerates in the past 0 open flat -0.5 always decelerates closed 0 0.5 1 1.5 2 Redshift z Using Union2 SN data (Amanullah et al 2010) binned in redshift
  • 4. ρDE (z) = ΩDE ρcrit (1 + z)3(1+w)
  • 5. Underlying Philosophy • The data are now consistent with LCDM, but that may change. • So, what observational strategies do we use to determine which violation of Occam’s Razor has the nature served us? • Possible alternatives: w(z) ≠ -1, early DE, curvature ≠ 0, modified gravity, more than one of the above (?!) • Goal: to calculate predicted ranges in fundamental cosmological functions D(z), H(z), G(z), (and any other parameters/functions of interest), given current or future observations • ... and therefore to provide ‘target’ quantities/redshifts for ruling out classes of DE models with upcoming data (BigBOSS, DES, LSST, space mission, ..........)
  • 6. DE Models and their complexity (-5≤w(z)≤3) (-1≤w(z)≤1)
  • 7. Modeling of DE Modeling of low-z w(z): Principal Components 500 bins (so 500 PCs) 0.03<z<1.7 We use first ~10 PCs; (results converge 10→15) Fit of a quintessence model with PCs
  • 8. Modeling of Early DE (de Putter & Linder 2008) 3(1+w∞ ) 1+z ρDE (z zmax ) = ρDE (zmax ) 1 + zmax Early DE - current constraints •ΩDE(zrec) 0.03 (CMB peaks; Doran, Robbers Wetterich 2007) •ΩDE(zBBN)0.05 (BBN; Bean, Hansen Melchiorri 2001) Modeling of Modified Gravity (Linder 2005) a G(a) = exp d ln a [Ωγ (a ) − 1] M 0 Advantage: γ≈0.55 for any GR model (small corrections for w(z)≠-1) Advantage: extremely easy to implement Disadvantage: actual MG growth may be scale-dependent
  • 9. Methodology 1. Start with the parameter set: ΩM , ΩK , H0 , w(z), w∞ 2. Use either the current data or future data 3. Employ the likelihood machine Markov Chain Monte Carlo likelihood calculation, between ~2 and ~15 parameters constrained 4. Compute predictions for D(z), G(z), H(z) (and γ(z), f(z))
  • 10. Cosmological Functions Expansion Rate (BAO): 1/2 ρDE (z) H(z) = H0 ΩM (1 + z) + ΩDE 3 + ΩK (1 + z)2 ρDE (0) Distance (SN, BAO, CMB): z 1 dz D(z) = S (|ΩK |H0 ) 2 )1/2 K 2 1/2 (|ΩK |H0 0 H(z ) Growth (WL, clusters): H H 3 G + 4+ G + 3+ − ΩM (z) G = 0 H H 2 G = D1 /a
  • 12. Structure of graphs to follow !#$%'%()*+,(-+.%*'/)#* Prediction on observable (given data) by SNe+CMB Pivot (around fiducial, or best-fit) Max extent of SN data Sketch by M. Mortonson
  • 13. Structure of graphs to follow !#$%'%()*+,(-+.%*'/)#* Sketch by M. Mortonson
  • 14. Predictions from Future Data Assumed “data”: 1. SNAP 2000 SNe, 0.1z1.7 (plus 300 low-z SNe); converted into distances 2. Planck info on Ωmh2 and DA(zrec) 2 0.1 0.15 2 1+z 2 σα = + 0.022 ∆zsub 2.7 Dead Alive Nα Predictions below shown around: fiducial model
  • 15. a e dat Futur LCDM predictions (flat or curved) Grey: flat Blue: curved D, G to 1% everywhere H(z=1) to 0.1% for flat LCDM
  • 16. a e dat Futur Quintessence predictions (flat) Grey: no Early DE Blue: with Early DE Smoking Gun of EDE: Uniform suppression in G
  • 17. a e dat utur F Quintessence predictions (no EDE) Grey: flat Blue: curved Smoking Gun of curvature: 1. Shift in G0 2. Negative const offset in D
  • 18. a e dat utur F Quintessence predictions with curvature and EDE Smoking Gun: Large negative deviation in G Note even in this general class, firm predictions: e.g., G and D can’t be LCDM value
  • 19. Smooth DE with curvature and/or Early DE Some quantities are accurately predicted even in very general classes of DE models (e.g. specific linear combination of G0 and G evaluated at z=1 vs z=zmax)
  • 20. Predictions from Current Data - SN Union compilation - Full WMAP power spectrum - DBAO(z=0.35) to ~3% from SDSS (adding 2dF ⇒ little diff) - H0 from SHOES (Riess et al): (74±3.6) km/s/Mpc; apply at z=0.04 Predictions below shown around: best-fit LCDM model
  • 21. Current LCDM (flat, no early DE) predictions
  • 22. urr ent LCDM predictions - flat or curved C a dat Growth Growth to z=1000 to z=0 Distance f×G Hubble Growth index parameter
  • 23. urr ent Quintessence predictions (flat, no Early DE) C d ata
  • 24. What current data (SN, mostly) prefer best-fit best-fit w(z) (QCDM) ΛCDM best-fit w0-wa
  • 25. From current data, projected down on ΩM-σ8 ΩK=0 (68% CL)
  • 26. From current and future data, projected down on w0-wa ΩK=0 (68% CL)
  • 27. In principal, constraints are good... (components) values for example Top row: quintessence model Current Data Bottom Row: Future Data Flat (assumes αi=0) Curved
  • 28. Figures of Merit (FoMs) The most common choice: area of the (95%) ellipse in the w0-wa plane (DETF report 2006, Huterer Turner 2001) 6.17π FoM ≡ (det Cw0 wa ) −1/2 ≈ wa 95% C.L. A95 Or, simply: 1 FoM ≡ σwpivot × σwa w0
  • 29. Generalizing FoM to many parameters - PCs of w(z) −1/2 det Cn FoM(PC) n ≡ (prior) det Cn (proportional to volume of n-dim ellipsoid) Future/current ratio
  • 30. Falsifying LCDM and Quintessence with “pink elephant” clusters 56 30 Pink Elephant: - any of various visual hallucinations sometimes 00 experienced as a Declination (2000) 57 30 withdrawal symptom 00 after sustained alcoholic drinking. 58 30 -Dictionary.com 0.1 h-1 Mpc 70 z = 1.393 -25! 59 00 26s 24s 22s 20s 18s 22h 35m 16s Right Ascension (2000) Mortonson, Hu Huterer: arXiv:1004.0236
  • 31. Cluster number counts: basics mass function; calibrated from simulations = dV / (dΩdz); exactly to ~10% accuracy predictable given a cosmological model d2 N r(z)2 = n(z) dΩ dz H(z) 5 ΩM=1, ΩDE=0 10 w=-0.8 dN/dz (4000 deg ) 2 10 4 observed 3 10 ΩM=0.3, ΩDE=0.7, w=-1 2 10 0 0.5 1 1.5 2 z • Essentially fully in the nonlinear regime (scales ~few Mpc)
  • 32. Pink elephant, candidate 1: SPT-CL J0546-5345 Brodwin et al, arXiv:1006.5639 optical (grz); contours are SZ optical (ri)+IRAC; contours are X-ray z=1.067 M ≈ (8±1)·1014 Msun SPT-CL J0546-5345: A Massive z 1 Galaxy Cluster Selected Via the SZE 7 TABLE 2 Comparison of Mass Measurements for SPT-CL J0546-5345 Mass Scaling M200 a,b Mass Type Proxy Measurement Units Relation (1014 M ) +6.1 Dispersion Biweight 1179 +232 −167 km/s σ–M200 (Evrard et al. 2008) 10.4 −4.4 Gapper 1170 +240 −128 km/s σ–M200 (Evrard et al. 2008) 10.1 +6.2 −3.3 Std Deviation 1138 +205 −132 km/s σ–M200 (Evrard et al. 2008) 9.3 +5.0 −3.2 X-ray YX 5.3 ± 1.0 ×1014 M keV YX –M500 (Vikhlinin et al. 2009) 8.23 ± 1.21 TX 7.5 +1.7 −1.1 keV TX –M500 (Vikhlinin et al. 2009) 8.11 ± 1.89 SZE YSZ 3.5 ± 0.6 ×1014 M keV YSZ – M500 (A10) 7.19 ± 1.51 S/N at 150 GHz 7.69 ξ – M500 (V10) 5.03 ± 1.13 ± 0.77 Richness N200 80 ± 31 galaxies N200 – M200 (H10) 8.5 ± 5.7 ± 2.5 Ngal 66 ± 7 galaxies Ngal – M200 (H10) 9.2 ± 4.9 ± 2.7 Best Combined 7.95 ± 0.92
  • 33. Pink elephant, candidate 2: XMMU J2235.3-2557 Mullis et al, 2005 Jee et al. 2008 56 30 z=1.39 Mx-ray ≈ (7.7±4)·1014 Msun 00 MWL ≈ (8.5±1.7)·1014 Msun Declination (2000) 57 30 00 58 30 0.1 h-1 Mpc 70 z = 1.393 -25! 59 00 26s 24s 22s 20s 18s 22h 35m 16s Right Ascension (2000)
  • 34. Pink elephant, candidate 3: SPT-CL J2106-5844 z=1.132 Foley et al 2011 MSZ+x-ray ≈ (1.27±0.21)·1015 Msun Williamson et al. 2011 4 Foley et al.
  • 35. Two sources of statistical uncertainty 1. Sample variance - the Poisson noise in counting rare objects in a finite volume 2. Parameter variance - uncertainty due to fact that current data allow cosmological parameters to take a range of values
  • 36. Parameter variance (due to uncertainty in cosmo parameters) 95% sample variance limit for seeing ≥1 clusters (and for fsky=1)
  • 37. Predicted abundance for M 10 15h-1 M sun, z 1.48 95% sample variance limit for fsky=1 95% parameter variance limit (in each case) Rule out ΛCDM ⇒ automatically rule out quintessence
  • 38. Eddington bias A.S. Eddington, MNRAS, 1913 For a steeply falling mass function, observed mass was more likely to be scattered into observed range from lower M than for higher M (≠ Malmquist bias: more luminous objects are more likely to scatter into the sample) dn/dlnM Δ ln(M) = (γ/2) σlnM2 log slope of MF Mobs±ΔMobs dlnM
  • 39. Results for the two pink elephant clusters vs. predictions for LCDM Shown limits: 95% both sample and parameter variance black error bars: masses corrected for Eddington bias
  • 40. Systematic effects Cluster mass SN light-curve fitter (Lambda) MF normalization SN light-curve fitter (Quint)
  • 41. Potentially useful product of paper: Fitting formulae to evaluate Nclusters that rule out LCDM at a given ✓ mass and redshift e.g. Williamson et al. 2011 ✓ sample variance confidence (SPT) ✓ parameter variance confidence ✓ fsky
  • 42. Conclusions I: Falsifying DE • Current (and, esp, future) data lead to strong predictions for D(z), G(z), H(z) • Examples: • Flat LCDM: H(z=1) to 0.1%, D(z), G(z) to 1% everywhere • Quint: D(z), G(z) to 5%; one-sided deviations • Smooth DE: tight consistency relations can still be found • GR tests: to 5% (~0.02) even with arbitrary w(z) • Total FoM=det(Cov) -1/2 improvement of 100 in the future • it’s wise to keep eyes open for mode exotic DE (and measuring PCs 3, 4, 5, 6...)
  • 43. Conclusions II: ‘Pink Elephants’ • It’s important to be careful about the various statistical, not just systematic, effects in analyzing the abundance of rare, massive and distant clusters • In particular, we find that the following effects have major effect on their likelihood • Parameter variance (in addition to sample variance) • Fair assessment of f sky • Eddington bias • So far none of the detected clusters rules out any models (contrary to some claims in the literature) • If an unusually massive/distant observed cluster observed tomorrow rules out LCDM, it will rule out quintessence at the same time