SlideShare a Scribd company logo
1 of 7
Download to read offline
Chapter 2
Exercise Problems

EX2.1
              30 − 12 − 0.6
iD ( peak ) =               = 87 mA
                   0.2
 vR ( max ) = 30 + 12 = 42 V
            ⎛ 12.6 ⎞
ω t1 = sin −1 ⎜    ⎟ ⇒ 24.8°
            ⎝ 30 ⎠
By symmetry
ω t2 = 180 − 24.8 = 155.2°
            155.2 − 24.8
% time =                 × 100% = 36.2%
                360

EX2.2
(a) vO = 12sin θ1 − 1.4 = 0
          1.4
or sin θ1 =   = 0.1166
           12
which yields
θ1 = 6.7°
By symmetry, θ 2 = 180 − 6.7 = 173.3°
                173.3 − 6.7
Then % time =               × 100% = 46.3%
                    360
                 1.4
(b)      sinθ1 =     = 0.35
                  4
which yields
θ1 = 20.5°
By symmetry, θ 2 = 180 − 20.5 = 159.5°
                    159.5 − 20.5
Then % time =                    × 100% = 38.6%
                        360

EX2.3
     VM             24
C=       =                        ⇒ or C = 500 μ F
   2 fRVr 2 ( 60 ) (103 ) ( 0.4 )

EX2.4
        VM       VM                     75
Vr =        ⇒R=       or R =
       f RC     f CVr        ( 60 ) ( 50 × 10−6 ) ( 4 )
Then R = 6.25 k Ω

EX2.5
10 ≤ VPS ≤ 14 V , VZ = 5.6 V , 20 ≤ RL ≤ 100 Ω
               5.6
I L ( max ) =      = 0.28 A,
               20
               5.6
 I L ( min ) =      = 0.056 A
               100
                  ⎡VPS ( max ) − VZ ⎤ ⋅ I L ( max )    ⎡VPS ( min ) − VZ ⎤ ⋅ I L ( min )
 I Z (max) = ⎣                      ⎦               −  ⎣                 ⎦
               VPS ( min ) − 0.9VZ − 0.1VPS ( max ) VPS ( min ) − 0.9VZ − 0.1VPS ( max )
                   (14 − 5.6 )( 280 ) − (10 − 5.6 )( 56 )
or I L ( max ) =
                     10 − ( 0.9 )( 5.6 ) − ( 0.1)(14 )
or I L ( max ) = 591.5 mA
Power(min) = I Z ( max ) ⋅ VZ = ( 0.5915)( 5.6 )
So Power(min) = 3.31 W
             VPS ( max ) − VZ         14 − 5.6
Now Ri =                          =               or Ri ≅ 13 Ω
         I Z ( max ) + I L ( min ) 0.5915 + 0.056

EX2.6
                                    13.6 − 9
For vPS = 13.6 V , I Z =                        = 0.2383 A
                                    15.3 + 4
                        vL ,max   = 9 + ( 4 )( 0.2383) = 9.9532 V
                                11 − 9
For vPS = 11 V , I Z =                     = 0.1036 A
                               15.3 + 4
                   vL ,min   = 9 + ( 4 )( 0.1036 ) = 9.4144 V
              ΔvL          9.9532 − 9.4144
Source Reg =      × 100% =                 × 100%
             ΔvPS             13.6 − 11
or Source Reg = 20.7%
                         13.6 − 9
For I L = 0, I Z =                   = 0.2383 A
                         15.3 + 4
         vL , noload   = 9 + ( 4 )( 0.2383) = 9.9532 V
                                    13.6 − ⎡9 + I Z ( 4 ) ⎤
                                           ⎣              ⎦
For I L = 100 mA, I Z =                                       − 0.10
                                            15.3
which yields
             I Z = 0.1591 A
 vL , full load = 9 + ( 4 )( 0.1591A ) = 9.6363 V
                   vL , noload − vL , full load
Load Reg =                                      × 100%
                           vL , full load
           9.9532 − 9.6363
               =           × 100%
                9.6363
or Load Reg = 3.29%

EX2.7
                   R1
                                                     VO




␯I   ϩ
     Ϫ                       D1                    D2


                           ϩ                        Ϫ
                           V1                       V2
                           Ϫ                        ϩ




For vI < 5 V , D2 on ⇒ VO = −5 V
Then, V2 = 4.3 V.
D1 turns on when v1 = 2.5 V,
Then, V1 = 1.8 V.
ΔvO 1    R2     1
For vI > 2.5 V ,      = ⇒        =
                   ΔvI 3  R1 + R2 3
So that R1 = 2R2

EX2.8
For Vγ = 0, vO ( max ) = −2 V
Now, ΔvO = 8 V , so that vO ( min ) = −10 V

EX2.9
                  10 − 4.4
vO = 4.4 V , I =           = 0.5895 mA
                     9.5
Set I = ID1, then vI = 4.4 − 0.6 − ( 0.5895 )( 0.5 ) = 3.505 V
Summary: For 0 ≤ vI ≤ 3.5 V , vO = 4.4 V
For vI > 3.5 V , D2 turns on and when vI ≥ 9.4 V , vO = 10 V
␯O(V)


   10




   4.4




    0
                   3.505                    9.4 ␯I (V)


EX2.10
 VO = −0.6 V , I D1 = 0
            −0.6 − ( −10 )
ID2 = I =                    ⇒ I D 2 = I = 4.27 mA
                 2.2

EX2.11
At the VA node:
15 − VA          V
        = ID2 + A            (1)
   5             15
At the VB node:
15 − (VB + 0.7 )          V
                 + I D 2 = B (2)
       5                  10
We see that
VB = VA − 0.7, so Equation (2) becomes
15 − VA          V − 0.7
        + ID2 = A          (2’)
   5               10
Solving for ID2 from Equation (1) and substituting into Equation (2’), we find
 ⎛ 15 − VA ⎞ VA VA − 0.7
2⎜         ⎟−     =
 ⎝ 5 ⎠ 15             10
Then VA = 10.71 V and VB = 10.01 V
                                                 15 − 10.71
Solving for the diode currents, we obtain I D1 =            ⇒ I D1 = 0.858 mA
                                                      5
15 − 10.71 10.71
Also I D 2 =              −      ⇒ I D 2 = 0.144 mA
                     5      15

EX2.12
Assuming all diodes are conducting, we have VB = −0.7 V and VA = 0
Summing currents, we have
5 − VA
          = I D1 + I D 2      (1)
    5
                V − ( −5 )
I D 2 + I D3 = B              (2)
                     5
        V − ( −10 ) 10 − 0.7
I D1 = B                =         (3)
             10            10
From ( 3) , we find
  I D1 = 0.93 mA
From (1) , we obtain
  I D 2 = 0.07 mA
From ( 2 ) , we have
  I D 3 = 0.79 mA

EX2.13
(a)    I ph = η eΦ
                              ⎡ 6.4 × 10 −2 ⎤
so I = ( 0.8 ) (1.6 × 10−19 ) ⎢                      ⎥ ( 0.5 )
                              ⎢ ( 2 ) (1.6 × 10−19 ) ⎥
                              ⎣                      ⎦
or I ph = 12.8 mA
(b)        We have vO = (12.8)(1) = 12.8 V .
The diode must be reverse biased so that VPS > 12.8 V

EX2.14
The equivalent circuit is
            ϩ5 V
                     ϩ
                     Vr ϭ 1.7 V
                     Ϫ


                 rf ϭ 15 ⍀

            I



                 R



0.2 V
         5 − 1.7 − 0.2
So I =                 = 15 mA
            rf + R
           15 − 1.7 − 0.2 3.1
Or rf + R =               =     = 0.207 kΩ
                 15         15
Then R = 207 − 15 ⇒ R = 192 Ω
2.15
             40 − 12
(a)     IZ =          = 0.233 A
                120
         P = ( 0.233)(12 ) = 2.8 W
(b)        I R = 0.233 A, I L = ( 0.9 )( 0.233) = 0.21 A
            12
So 0.21 =      ⇒ RL = 57.1 Ω
            RL
(c)        P = ( 0.1)( 0.233)(12 ) ⇒ P = 0.28 W

Test Your Understanding Exercises

TYU2.1
vI = 120sin ( 2π 60t ) , Vγ = 0.7 V , and R = 2.5 kΩ
Full-wave rectifier: Turns ratio 1:2 so that
 vS = v I
VM = 120 − 0.7 = 119.3 V
 Vr = 119.3 − 100 = 19.3 V
            VM               119.3
So C =          =                             or C = 20.6 μ F
         2 f RVr 2 ( 60 ) ( 2.5 x103 ) (19.3)

TYU2.2
vI = 50sin ( 2π 60t ) , Vγ = 0.7 V , and R = 10 kΩ. Full-wave rectifier
         VM         ( 50 − 1.4 )
C=           =
      2 f RVr 2 ( 60 ) (10 × 103 ) ( 2 )
or C = 20.3 μ F

TYU2.3
Using Equation (2.10)
                              2Vr          2 ( 4)
(a)                 ω Δt =        =                 = 0.327
                              VM            75
                          ⎛ 0.327 ⎞
           Percent time = ⎜       ⎟ × 100% = 5.2%
                          ⎝ 2π ⎠
                              2Vr          2 (19.3)
(b)                 ω Δt =        =                   = 0.569
                              VM            119.3
                          ⎛ 0.569 ⎞
           Percent time = ⎜       ⎟ × 100% = 18.1%
                          ⎝ π ⎠
                              2Vr          2 ( 2)
(c)                 ω Δt =        =                 = 0.287
                              VM           48.6
                          ⎛ 0.287 ⎞
           Percent time = ⎜       ⎟ × 100% = 9.14%
                          ⎝ π ⎠

TYU2.4
     V − VZ
I Z = PS    − IL
         Ri
                                               11 − 9
For VPS (min) and IL (max), then I Z ( min ) =        − 0.1 = 0 (Minimum Zener current is zero.)
                                                20
                                               13.6 − 9
For VPS (max) and IL (min), then I Z ( max ) =          − 0 ⇒ I Z ( max ) = 230 mA
                                                  20
The characteristic of the minimum Zener current being one-tenth of the maximum value is violated.
The proper circuit operation is questionable.

TYU2.5
VPS ( min ) − VZ
I Z ( min ) =                         − I L ( max )
                          Ri
                10 − 9
so 30 =                − I L ( max ) which yields I L ( max ) = 35.4 mA
                0.0153

TYU2.6
                        ␯O(V)


                         4.35


                           2.7



      Ϫ4.7
                                           2.7            6     ␯I (V)




                                 Ϫ4.7


TYU2.7
As vS goes negative, D turns on and vO = +5 V . As vS goes positive, D turns off. Output is a square
wave oscillating between +5 and +35 volts.

TYU2.8
␯O(V)


      4.4




            0    0.6                                  5       ␯I (V)
(a)
␯O(V)


      4.4




      2.4




            0                          3              5       ␯I (V)
(b)
TYU2.9
(a)    VO = 0.6 V for all V1.
  VO (V)



     3.6




     0.6


           0                    3   VI (V)
(b)
PSpice Exercises

More Related Content

What's hot

Kanodia murolia previousyears
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyears
Anwesa Roy
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
manish katara
 
UGC NET Model questions Engineering science
UGC NET Model questions Engineering scienceUGC NET Model questions Engineering science
UGC NET Model questions Engineering science
Jithesh V Nair
 

What's hot (20)

Power power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdfPower power electronics (solution manual) by M.H.Rashid.pdf
Power power electronics (solution manual) by M.H.Rashid.pdf
 
Ch10p
Ch10pCh10p
Ch10p
 
Kanodia murolia previousyears
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyears
 
Ch04s
Ch04sCh04s
Ch04s
 
A.gate by-rk-kanodia
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
 
Ch11s
Ch11sCh11s
Ch11s
 
Ch16s
Ch16sCh16s
Ch16s
 
130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan130 problemas dispositivos electronicos lopez meza brayan
130 problemas dispositivos electronicos lopez meza brayan
 
Ch12p
Ch12pCh12p
Ch12p
 
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
[Paul lorrain] solutions_manual_for_electromagneti(bookos.org)
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
Ch16p
Ch16pCh16p
Ch16p
 
Ch15s
Ch15sCh15s
Ch15s
 
Ch03s
Ch03sCh03s
Ch03s
 
W ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
 
Gate ee 2012 with solutions
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutions
 
Ch13p
Ch13pCh13p
Ch13p
 
UGC NET Model questions Engineering science
UGC NET Model questions Engineering scienceUGC NET Model questions Engineering science
UGC NET Model questions Engineering science
 
Gate ee 2008 with solutions
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
 
bai tap va phuong phap giai bai tap dien xoay chieu
bai tap va phuong phap giai bai tap dien xoay chieubai tap va phuong phap giai bai tap dien xoay chieu
bai tap va phuong phap giai bai tap dien xoay chieu
 

Viewers also liked (8)

Ch12s
Ch12sCh12s
Ch12s
 
Ch07p
Ch07pCh07p
Ch07p
 
Ch03p
Ch03pCh03p
Ch03p
 
Ch07s
Ch07sCh07s
Ch07s
 
Ch06p
Ch06pCh06p
Ch06p
 
Ch01s
Ch01sCh01s
Ch01s
 
Ch05s
Ch05sCh05s
Ch05s
 
Ch09p
Ch09pCh09p
Ch09p
 

Similar to Ch02p

Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Ansal Valappil
 
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
rafbolet0
 

Similar to Ch02p (18)

Ch11p
Ch11pCh11p
Ch11p
 
Chapter 04 is
Chapter 04 isChapter 04 is
Chapter 04 is
 
Ch09s
Ch09sCh09s
Ch09s
 
Ch04p
Ch04pCh04p
Ch04p
 
ECNG 3013 D
ECNG 3013 DECNG 3013 D
ECNG 3013 D
 
lecture6_16.360.ppt
lecture6_16.360.pptlecture6_16.360.ppt
lecture6_16.360.ppt
 
Ch17s 3rd Naemen
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
 
Ch10s
Ch10sCh10s
Ch10s
 
Ch17p 3rd Naemen
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
 
Capitulo 4, 7ma edición
Capitulo 4, 7ma ediciónCapitulo 4, 7ma edición
Capitulo 4, 7ma edición
 
Ch05p
Ch05pCh05p
Ch05p
 
William hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
 
Solution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chinSolution manual for water resources engineering 3rd edition - david a. chin
Solution manual for water resources engineering 3rd edition - david a. chin
 
Ch06s
Ch06sCh06s
Ch06s
 
ECNG 3013 B
ECNG 3013 BECNG 3013 B
ECNG 3013 B
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 

Recently uploaded

Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 

Recently uploaded (20)

Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024AXA XL - Insurer Innovation Award Americas 2024
AXA XL - Insurer Innovation Award Americas 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 

Ch02p

  • 1. Chapter 2 Exercise Problems EX2.1 30 − 12 − 0.6 iD ( peak ) = = 87 mA 0.2 vR ( max ) = 30 + 12 = 42 V ⎛ 12.6 ⎞ ω t1 = sin −1 ⎜ ⎟ ⇒ 24.8° ⎝ 30 ⎠ By symmetry ω t2 = 180 − 24.8 = 155.2° 155.2 − 24.8 % time = × 100% = 36.2% 360 EX2.2 (a) vO = 12sin θ1 − 1.4 = 0 1.4 or sin θ1 = = 0.1166 12 which yields θ1 = 6.7° By symmetry, θ 2 = 180 − 6.7 = 173.3° 173.3 − 6.7 Then % time = × 100% = 46.3% 360 1.4 (b) sinθ1 = = 0.35 4 which yields θ1 = 20.5° By symmetry, θ 2 = 180 − 20.5 = 159.5° 159.5 − 20.5 Then % time = × 100% = 38.6% 360 EX2.3 VM 24 C= = ⇒ or C = 500 μ F 2 fRVr 2 ( 60 ) (103 ) ( 0.4 ) EX2.4 VM VM 75 Vr = ⇒R= or R = f RC f CVr ( 60 ) ( 50 × 10−6 ) ( 4 ) Then R = 6.25 k Ω EX2.5 10 ≤ VPS ≤ 14 V , VZ = 5.6 V , 20 ≤ RL ≤ 100 Ω 5.6 I L ( max ) = = 0.28 A, 20 5.6 I L ( min ) = = 0.056 A 100 ⎡VPS ( max ) − VZ ⎤ ⋅ I L ( max ) ⎡VPS ( min ) − VZ ⎤ ⋅ I L ( min ) I Z (max) = ⎣ ⎦ − ⎣ ⎦ VPS ( min ) − 0.9VZ − 0.1VPS ( max ) VPS ( min ) − 0.9VZ − 0.1VPS ( max ) (14 − 5.6 )( 280 ) − (10 − 5.6 )( 56 ) or I L ( max ) = 10 − ( 0.9 )( 5.6 ) − ( 0.1)(14 )
  • 2. or I L ( max ) = 591.5 mA Power(min) = I Z ( max ) ⋅ VZ = ( 0.5915)( 5.6 ) So Power(min) = 3.31 W VPS ( max ) − VZ 14 − 5.6 Now Ri = = or Ri ≅ 13 Ω I Z ( max ) + I L ( min ) 0.5915 + 0.056 EX2.6 13.6 − 9 For vPS = 13.6 V , I Z = = 0.2383 A 15.3 + 4 vL ,max = 9 + ( 4 )( 0.2383) = 9.9532 V 11 − 9 For vPS = 11 V , I Z = = 0.1036 A 15.3 + 4 vL ,min = 9 + ( 4 )( 0.1036 ) = 9.4144 V ΔvL 9.9532 − 9.4144 Source Reg = × 100% = × 100% ΔvPS 13.6 − 11 or Source Reg = 20.7% 13.6 − 9 For I L = 0, I Z = = 0.2383 A 15.3 + 4 vL , noload = 9 + ( 4 )( 0.2383) = 9.9532 V 13.6 − ⎡9 + I Z ( 4 ) ⎤ ⎣ ⎦ For I L = 100 mA, I Z = − 0.10 15.3 which yields I Z = 0.1591 A vL , full load = 9 + ( 4 )( 0.1591A ) = 9.6363 V vL , noload − vL , full load Load Reg = × 100% vL , full load 9.9532 − 9.6363 = × 100% 9.6363 or Load Reg = 3.29% EX2.7 R1 VO ␯I ϩ Ϫ D1 D2 ϩ Ϫ V1 V2 Ϫ ϩ For vI < 5 V , D2 on ⇒ VO = −5 V Then, V2 = 4.3 V. D1 turns on when v1 = 2.5 V, Then, V1 = 1.8 V.
  • 3. ΔvO 1 R2 1 For vI > 2.5 V , = ⇒ = ΔvI 3 R1 + R2 3 So that R1 = 2R2 EX2.8 For Vγ = 0, vO ( max ) = −2 V Now, ΔvO = 8 V , so that vO ( min ) = −10 V EX2.9 10 − 4.4 vO = 4.4 V , I = = 0.5895 mA 9.5 Set I = ID1, then vI = 4.4 − 0.6 − ( 0.5895 )( 0.5 ) = 3.505 V Summary: For 0 ≤ vI ≤ 3.5 V , vO = 4.4 V For vI > 3.5 V , D2 turns on and when vI ≥ 9.4 V , vO = 10 V ␯O(V) 10 4.4 0 3.505 9.4 ␯I (V) EX2.10 VO = −0.6 V , I D1 = 0 −0.6 − ( −10 ) ID2 = I = ⇒ I D 2 = I = 4.27 mA 2.2 EX2.11 At the VA node: 15 − VA V = ID2 + A (1) 5 15 At the VB node: 15 − (VB + 0.7 ) V + I D 2 = B (2) 5 10 We see that VB = VA − 0.7, so Equation (2) becomes 15 − VA V − 0.7 + ID2 = A (2’) 5 10 Solving for ID2 from Equation (1) and substituting into Equation (2’), we find ⎛ 15 − VA ⎞ VA VA − 0.7 2⎜ ⎟− = ⎝ 5 ⎠ 15 10 Then VA = 10.71 V and VB = 10.01 V 15 − 10.71 Solving for the diode currents, we obtain I D1 = ⇒ I D1 = 0.858 mA 5
  • 4. 15 − 10.71 10.71 Also I D 2 = − ⇒ I D 2 = 0.144 mA 5 15 EX2.12 Assuming all diodes are conducting, we have VB = −0.7 V and VA = 0 Summing currents, we have 5 − VA = I D1 + I D 2 (1) 5 V − ( −5 ) I D 2 + I D3 = B (2) 5 V − ( −10 ) 10 − 0.7 I D1 = B = (3) 10 10 From ( 3) , we find I D1 = 0.93 mA From (1) , we obtain I D 2 = 0.07 mA From ( 2 ) , we have I D 3 = 0.79 mA EX2.13 (a) I ph = η eΦ ⎡ 6.4 × 10 −2 ⎤ so I = ( 0.8 ) (1.6 × 10−19 ) ⎢ ⎥ ( 0.5 ) ⎢ ( 2 ) (1.6 × 10−19 ) ⎥ ⎣ ⎦ or I ph = 12.8 mA (b) We have vO = (12.8)(1) = 12.8 V . The diode must be reverse biased so that VPS > 12.8 V EX2.14 The equivalent circuit is ϩ5 V ϩ Vr ϭ 1.7 V Ϫ rf ϭ 15 ⍀ I R 0.2 V 5 − 1.7 − 0.2 So I = = 15 mA rf + R 15 − 1.7 − 0.2 3.1 Or rf + R = = = 0.207 kΩ 15 15 Then R = 207 − 15 ⇒ R = 192 Ω 2.15 40 − 12 (a) IZ = = 0.233 A 120 P = ( 0.233)(12 ) = 2.8 W
  • 5. (b) I R = 0.233 A, I L = ( 0.9 )( 0.233) = 0.21 A 12 So 0.21 = ⇒ RL = 57.1 Ω RL (c) P = ( 0.1)( 0.233)(12 ) ⇒ P = 0.28 W Test Your Understanding Exercises TYU2.1 vI = 120sin ( 2π 60t ) , Vγ = 0.7 V , and R = 2.5 kΩ Full-wave rectifier: Turns ratio 1:2 so that vS = v I VM = 120 − 0.7 = 119.3 V Vr = 119.3 − 100 = 19.3 V VM 119.3 So C = = or C = 20.6 μ F 2 f RVr 2 ( 60 ) ( 2.5 x103 ) (19.3) TYU2.2 vI = 50sin ( 2π 60t ) , Vγ = 0.7 V , and R = 10 kΩ. Full-wave rectifier VM ( 50 − 1.4 ) C= = 2 f RVr 2 ( 60 ) (10 × 103 ) ( 2 ) or C = 20.3 μ F TYU2.3 Using Equation (2.10) 2Vr 2 ( 4) (a) ω Δt = = = 0.327 VM 75 ⎛ 0.327 ⎞ Percent time = ⎜ ⎟ × 100% = 5.2% ⎝ 2π ⎠ 2Vr 2 (19.3) (b) ω Δt = = = 0.569 VM 119.3 ⎛ 0.569 ⎞ Percent time = ⎜ ⎟ × 100% = 18.1% ⎝ π ⎠ 2Vr 2 ( 2) (c) ω Δt = = = 0.287 VM 48.6 ⎛ 0.287 ⎞ Percent time = ⎜ ⎟ × 100% = 9.14% ⎝ π ⎠ TYU2.4 V − VZ I Z = PS − IL Ri 11 − 9 For VPS (min) and IL (max), then I Z ( min ) = − 0.1 = 0 (Minimum Zener current is zero.) 20 13.6 − 9 For VPS (max) and IL (min), then I Z ( max ) = − 0 ⇒ I Z ( max ) = 230 mA 20 The characteristic of the minimum Zener current being one-tenth of the maximum value is violated. The proper circuit operation is questionable. TYU2.5
  • 6. VPS ( min ) − VZ I Z ( min ) = − I L ( max ) Ri 10 − 9 so 30 = − I L ( max ) which yields I L ( max ) = 35.4 mA 0.0153 TYU2.6 ␯O(V) 4.35 2.7 Ϫ4.7 2.7 6 ␯I (V) Ϫ4.7 TYU2.7 As vS goes negative, D turns on and vO = +5 V . As vS goes positive, D turns off. Output is a square wave oscillating between +5 and +35 volts. TYU2.8 ␯O(V) 4.4 0 0.6 5 ␯I (V) (a) ␯O(V) 4.4 2.4 0 3 5 ␯I (V) (b)
  • 7. TYU2.9 (a) VO = 0.6 V for all V1. VO (V) 3.6 0.6 0 3 VI (V) (b) PSpice Exercises