www.AulasEnsinoMedio.com.br - Matemática - Análise Combinatória

660 visualizações

Publicada em

Matemática - VideoAulas Sobre Análise Combinatória – Faça o Download desse material em nosso site. Acesse www.AulasEnsinoMedio.com.br

Publicada em: Educação
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
660
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1
Ações
Compartilhamentos
0
Downloads
48
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

www.AulasEnsinoMedio.com.br - Matemática - Análise Combinatória

  1. 1. Análise Combinatória
  2. 2. Objetivos da aula • Princípio Fundamental da Contagem • Arranjo Simples • Permutações: simples e com repetição • Combinação simples
  3. 3. Princípio Fundamental da Contagem Vamos imaginar o caso de uma montadora de carros que dispõe de 5 cores (preto, vinho, azul, vermelho e prata) para fabricar 3 modelos de carros diferentes (Sapoti, Figo e Amora). Para saber quantos tipos de carros diferentes podem ser fabricados, basta cruzar cada cor, com cada tipo de carro. Usando o esquema a seguir fica mais fácil!
  4. 4. Temos 15 diferentes tipos de carro.
  5. 5. Análise Combinatória Princípio Fundamental da contagem Evento que depende de evento anterior
  6. 6. Tente fazer sozinho 1) Se jogarmos uma moeda para o alto 3 vezes, quantas sequências diferentes podemos obter?
  7. 7. Tente fazer sozinho 1) Se jogarmos uma moeda para o alto 3 vezes, quantas sequências diferentes podemos obter?
  8. 8. Solução Logo, temos 8 resultados diferentes
  9. 9. Fatorial de um número natural Representamos o fatorial de um número colocando um ponto de exclamação depois desse número (n!) Exemplos: 4! 7! 20!
  10. 10. Cálculo do Fatorial O fatorial de um número natural n é dado pelo seguinte produto: n! = n . (n-1) . (n-2) . (n-3). ... . 2.1 Exemplos: • 4! = 4.3.2.1 = 24 • 10! = 10.9.8.7.6.5.4.3.2.1= 3628800
  11. 11. O fatorial de zero é igual a 1 0! = 1
  12. 12. Tente fazer sozinho 2) Calcule: !6!15 !3!17
  13. 13. Solucão 15 34 4.5.6 16.17 !3.4.5.6!.15 !3.15.16.17 !3.4.5.6!.15 !3!.15.16.17 !6!15 !3!17 == ==
  14. 14. Tente fazer sozinho 3) (UEMG) Simplificando a expressão , obtemos:( ) ( )!2 !1! + ++ n nn 111 1 ) 1 ) −+−− n n d) n n c) n b n n a
  15. 15. Solução Letra D ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 1 1 !12 2! !12 2! !12 11! !12 !1! !2 !1! + = ++ + = ++ + = ++ ++ = ++ ++ = + ++ nnnn nn nnn nn nnn nn nnn nnn n nn
  16. 16. Arranjo Simples O arranjo simples acontece quando fazemos qualquer agrupamento com todos ou alguns elementos de um conjunto, cuja ordem dos elementos é considerada. Exemplo: Quantos números de 3 algarismos distintos podemos formar com os algarismos 2, 3, 4, 5 e 6. = 60 números 5 4 3
  17. 17. Sendo: n  número total de elementos do conjunto p  quantidade de algarismos pedida ( )! ! pn n A p n − = ( ) 60 !3 !3.4.5.6 !3 !6 !36 !63 6 === − =A Também podemos usar a fórmula de arranjo simples:
  18. 18. Análise Combinatória Princípio Fundamental da contagem Arranjo Simples Definição Fórmula Agrupamento de pelo menos 2 elementos Importa a ordem Evento que depende de evento anterior ( )! ! pn n A p n − =
  19. 19. Tente fazer sozinho 4) Considere os algarismos 1, 2, 3, 4, 5, 6, 7, 8 e 9. a)Quantos números de 3 algarismos distintos podemos escrever? b)Quantos números de 4 algarismos distintos que terminem com 7 podemos escrever? c) Quantos números de 7 algarismos distintos que iniciem com 3 e terminem com 8 podemos escrever?
  20. 20. Tente fazer sozinho 4) Considere os algarismos 1, 2, 3, 4, 5, 6, 7, 8 e 9. a) Quantos números de 3 algarismos distintos podemos escrever? b) Quantos números de 4 algarismos distintos que terminem com 7 podemos escrever? c) Quantos números de 7 algarismos distintos que iniciem com 3 e terminem com 8 podemos escrever?
  21. 21. Solução a) = 504 b) = 336 c) = 840 9 8 7 8 7 6 1 7 6 5 41 1 7 83
  22. 22. Permutação A permutação é um caso particular do arranjo simples, pois acontece quando agrupamos todos os elementos do conjunto dado. Exemplo: dados 1, 2, 3, 4, 5, se queremos formar números de 3 algarismos, temos um caso de arranjo. Se queremos formar números de 5 algarismos, temos um caso de arranjo, particularmente, a permutação.
  23. 23. Permutação Simples A permutação simples acontece quando fazemos qualquer agrupamento com todos os elementos de um conjunto. Exemplo: A palavra AMOR apresenta 4 letras e com elas, podemos formar alguns anagramas: ROMA – MORA – ROAM - ARMO
  24. 24. Permutação Simples Para calcular o número total de anagramas, podemos seguir o seguinte raciocínio: = 24 Também podemos usar a fórmula de permutação simples: Pn = n! P4 = 4! = 4 . 3 . 2 . 1 = 24 4 3 2 1
  25. 25. Tente fazer sozinho 5) (UF Pel. – RS Adaptado) Tomando como base a palavra UFPEL, resolva as seguintes questões: a)Quantos anagramas podemos formar? b)Quantos anagramas podemos formar, de modo que comece e termine com vogal? c)Quantos anagramas podemos formar, de modo que as letras UF apareçam sempre juntas?
  26. 26. Tente fazer sozinho 5) (UF Pel. – RS Adaptado) Tomando como base a palavra UFPEL, resolva as seguintes questões: a)Quantos anagramas podemos formar? b)Quantos anagramas podemos formar, de modo que comece e termine com vogal? c)Quantos anagramas podemos formar, de modo que as letras UF apareçam sempre juntas?
  27. 27. Solução a) = 120 b) = 12 c) = 6 ; 6 .4 = 24 = 2 ; 2 x 24 = 48 1 3 2 1 4 3 2 15 3 2 1 12 UF 2 1
  28. 28. Tente fazer sozinho 6) (UNIRIO) Uma família formada por 3 adultos e 2 crianças vai viajar, sendo 2 na frente e 3 atrás. Sabendo-se que apenas 2 pessoas podem dirigir e que as crianças devem ir atrás e na janela, o número total de maneiras diferentes através das quais estas 5 pessoas podem ser posicionadas, não permitindo as crianças irem no colo de ninguém, é igual a: a) 120 b) 96 c) 48 d) 24 e) 8
  29. 29. Tente fazer sozinho 6) (UNIRIO) Uma família formada por 3 adultos e 2 crianças vai viajar, sendo 2 na frente e 3 atrás. Sabendo-se que apenas 2 pessoas podem dirigir e que as crianças devem ir atrás e na janela, o número total de maneiras diferentes através das quais estas 5 pessoas podem ser posicionadas, não permitindo as crianças irem no colo de ninguém, é igual a: a) 120 b) 96 c) 48 d) 24 e) 8
  30. 30. Solução = 82 2 2 1 1  bancos da frente bancos de trás  janelas carona motorista
  31. 31. Permutação com Repetição Caso o conjunto dado apresente elementos repetidos, usaremos a seguinte fórmula: Sendo: n  o número total de elementos α, β, γ  número que indica a quantidades de elementos repetidos de cada tipo. !!! !,, γβα γβα n Pn =
  32. 32. Permutação com Repetição Exemplo: A palavra ARARAQUARA apresenta um total de 10 letras, sendo 5A, 3R, 1Q e 1U 5040 2.3!5 !5.6.7.8.9.10 2.3!5 !5.6.7.8.9.10 !3!5 !103,5 10 = ===P
  33. 33. Tente fazer sozinho 7) Apresente a quantidade de anagramas da palavra MISSISSIPI.
  34. 34. Tente fazer sozinho 7) Apresente a quantidade de anagramas da palavra MISSISSIPI.
  35. 35. Solução MISSISSIPI: 10 letras, sendo 1M, 4I, 4S, 1P 6300 2.3.4!4 !4.5.6.7.8.9.10 2.3.4!4 !4.5.6.7.8.9.10 !4!4 !104,4 10 = ===P
  36. 36. Análise Combinatória Princípio Fundamental da contagem Arranjo Simples Definição Fórmula Agrupamento de pelo menos 2 elementos Importa a ordem Caso Particular Permutação Evento que depende de evento anterior ( )! ! pn n A p n − =
  37. 37. Arranjo Simples Definição Fórmula Agrupamento de pelo menos 2 elementos Importa a ordem Permutação Definição Tipos Com repetição simples Agrupamento de todos elementos dados P! Caso Particular característica ( )! ! pn n A p n − = !!! !,, γβα γβα n Pn =
  38. 38. Combinação Simples A combinação simples acontece quando agrupamos uma quantidade p de elementos de um conjunto com n elementos, sem importar a ordem que esses elementos são escolhidos. Exemplo: Se devemos sortear 3 pessoas dentre as 5 que se candidataram a uma viagem, não importa a ordem que as 3 serão escolhidas, pois todas as 3 irão da mesma forma.
  39. 39. Combinação Simples Para resolver problemas que ocorrem a combinação simples, usaremos a fórmula: Exemplo: Se devemos sortear 3 pessoas dentre 5. ( )!! ! pnp n C p n − = ( ) 10 2!3 !3.4.5 2!3 !3.4.5 !2!3 !5 !35!3 !53 5 ==== − =C
  40. 40. Tente fazer sozinho 8) (UERJ)Sete diferentes figuras foram criadas para ilustrar, em grupo de 4 distintas, o Manual do Candidato do Vestibular Estadual de 2007. Um desses grupos está apresentado a seguir: Considere que cada grupo de 4 figuras que poderia ser formado é distinto de outro somente quando pelo menos uma de suas figuras for diferente. Nesse caso, o número total de grupos distintos entre si que poderiam ser formados para ilustrar o Manual do Candidato é igual a:
  41. 41. Tente fazer sozinho 8) (UERJ)Sete diferentes figuras foram criadas para ilustrar, em grupo de 4 distintas, o Manual do Candidato do Vestibular Estadual de 2007. Um desses grupos está apresentado a seguir: Considere que cada grupo de 4 figuras que poderia ser formado é distinto de outro somente quando pelo menos uma de suas figuras for diferente. Nesse caso, o número total de grupos distintos entre si que poderiam ser formados para ilustrar o Manual do Candidato é igual a:
  42. 42. Solução ( ) 35 2.3!4 !4.5.6.7 !3!4 !7 !47!4 !74 7 == == − =C
  43. 43. Tente fazer sozinho 9) (IME-RJ) Com 10 espécies de frutas, quantos copos de salada, contendo 6 espécies diferentes, podem ser feitos?
  44. 44. Tente fazer sozinho 9) (IME-RJ) Com 10 espécies de frutas, quantos copos de salada, contendo 6 espécies diferentes, podem ser feitos?
  45. 45. Solução ( ) 210 2.3.4!6 !6.7.8.9.10 !4!6 !10 !610!6 !106 10 == == − =C
  46. 46. Análise Combinatória Princípio Fundamental da contagem Arranjo Simples Definição Fórmula Combinação Simples Definição Fórmula Agrupamento de pelo menos 2 elementos Importa a ordem ( )! ! pn n A p n − = ( )!! ! pnp n C p n − = Caso Particular Permutação Agrupamento de pelo menos 2 elementos Importa a ordem Evento que depende de evento anterior
  47. 47. Bibliografia • http://www.colegioweb.com.br/matematica/principio-fun • http://matematica-online-clc.blogspot.com/2009/07/ana • Dante, Luiz Roberto: Matemática Contexto & Aplicações 2 – Ensino Médio, Editora Ática – 3ª edição. Págs: 308 a 325

×