SlideShare uma empresa Scribd logo
1 de 23
Baixar para ler offline
Introduction into hierarchical matrix technique
Alexander Litvinenko
KAUST, SRI-UQ Center
http://sri-uq.kaust.edu.sa/
www.hlib.org www.hlibpro.com
August 16, 2015
4*
My interests and cooperations
2 / 27
4*
Content
1. Motivation
2. Low-rank matrices
3. Cluster Tree, Block Cluster Tree and Admissibility condition
4. 1D BEM example
5. Hierarchical matrices: cost and storage
6. Two applications
Used: H-matrices Winter School Script (www.hlib.org), PhD thesis
of Ronald Kriemann, preprints from www.mis.mpg.de
3 / 27
4*
Motivation: Iterative and direct solvers
Ax = b
Iterative methods: Jacobi, Gauss- Seidel, SOR, ...
Direct solvers: Gaussian elimination, domain decompositions, LU,...
Cost of A−1 is O(n3), number of iteration is proportional to
cond(A).
If A is structured (diagonal, Toeplitz, circulant) then can apply e.g.
FFT, but if not ?
What if you need not only x = A−1b, but f (A)
(e.g. A−1, exp A, sinA, signA, ...)?
4 / 27
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32
32 32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32
32 32
32
32 32
32
32 32
32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
Figure : The H-matrix approximation of the stiffness matrix of the
Poisson problem (left) and its inverse (right). The dark blocks are dense
matrices. The light blocks are low-rank matrices with maximal rank
kmax = 5.
5 / 27
4*
Rank-k matrices
M ∈ Rn×m, U ≈ ˜U ∈ Rn×k, V ≈ ˜V ∈ Rm×k, k min(n, m).
The storage ˜M = ˜U ˜Σ ˜V T is k(n + m) instead of n · m for M
represented in the full matrix format.
U VΣ
T=M
U
VΣ∼
∼ ∼ T
=M
∼
Figure : Reduced SVD, only k biggest singular values are taken.
6 / 27
4*
H-matrices (Hackbusch ’99)
1. Build cluster tree TI and block cluster tree TI×I .
I
I
I I
I
I
I I I I1
1
2
2
11 12 21 22
I11
I12
I21
I22
7 / 27
4*
Admissible condition
2. For each (t × s) ∈ TI×I , t, s ∈ TI , check
admissibility condition
min{diam(Qt), diam(Qs)} ≤ η · dist(Qt, Qs).
if(adm=true) then M|t×s is a rank-k matrix
block
if(adm=false) then divide M|t×s further or de-
fine as a dense matrix block, if small enough.
Q
Qt
S
dist
H=
t
s
Resume: Grid → cluster tree (TI ) + admissi-
bility condition → block cluster tree (TI×I ) →
H-matrix → H-matrix arithmetics.
4 2
2 2 3
3 3
4 2
2 2
4 2
2 2
4
8 / 27
4*
Where does the admissibility condition come from?
Let B1, B2 ⊂ Rd are compacts, and χ(x, y) is defined for
(x, y) ∈ B1 × B2 with x = y.
Let K be an integral operator with an asymptotic smooth kernel χ
in the domain B1 × B2:
(Kv)(x) =
B2
χ(x, y)v(y)dy (x ∈ B1).
Suppose that χ(k)(x, y) is an approximation of χ in B1 × B2 of the
separate form:
χ(k)
(x, y) =
k
ν=1
ϕ(k)
ν (x)ψ(k)
ν (y),
where k is the rank of separation.
Then χ − χ(k)
∞,B1×B2 ≤ c1
c2min{diam(B1),diam(B2)}
dist(B1,B2)
k
.
9 / 27
4*
H-Matrix Approximation of BEM Matrix
Consider the following integral equation
1
0
log |x − y|U(y)dy = F(x), x ∈ (0, 1).
After discretisation by Galerkin’s method we obtain
1
0
1
0
φi (x) log |x − y|U(y)dydx =
1
0
φi (x)F(x)dx, 0 ≤ i < n,
in the space Vn := span{φ0, ..., φn−1}, where φi , i = 1, ..., n − 1,
are some basis functions in BEM. The discrete solution Un in the
space Vn is Un := n−1
j=0 uj φj with uj being the solution of the
linear system 10 / 27
Gu = f , Gij :=
1
0
1
0
φi (x) log |x − y|φj (y)dydx, fi :=
1
0
φi (x)F(x)dx.
(1)
We replace the kernel function g(x, y) = log |x − y| by a
degenerate kernel
˜g(x, y) =
k−1
ν=0
gν(x)hν(y). (2)
Then we substitute g(x, y) = log |x − y| in (1) for ˜g(x, y)
˜Gij :=
1
0
1
0
φi (x)
k−1
ν=0
gν(x)hν(y)φj (y)dydx.
After easy transformations
˜Gij :=
k−1
ν=0
(
1
0
φi (x)gν(x)dx)(
1
0
hν(y)φj (y)dy).
11 / 27
Now, all admissible blocks G|(t,s) can be represented in the form
G|(t,s) = ABT
, A ∈ R|t|×k
, B ∈ R|s|×k
,
where the entries of the factors A and B are
Aiν :=
1
0
φi (x)gν(x)dx, Bjν :=
1
0
φj (y)hν(y)dy.
We use the fact that the basis functions are local and obtain for all
inadmissible blocks:
˜Gij :=
(i+1)/n
i/n
(j+1)/n
j/n
log |x − y|dydx.
12 / 27
4*
Storage and complexity (single proc. and p-proc. on shared mem.)
Let H(TI×J, k) := {M ∈ RI×J | rank(M |t×s) ≤ k for all
admissible leaves t × s of TI×J}, n := max(|I|, |J|, |K|).
Operation Sequential Compl. Parallel Complexity
(R.Kriemann 2005)
building(M) N = O(n log n) N
p + O(|V (T)L(T)|)
storage(M) N = O(kn log n) N
Mx N = O(kn log n) N
p + n√
p
αM ⊕ βM N = O(k2n log n) N
p
αM M ⊕ βM N = O(k2n log2
n) N
p + O(Csp(T)|V (T)|)
M−1 N = O(k2n log2
n) N
p + O(nn2
min)
LU N = O(k2n log2
n) N
H-LU N = O(k2n log2
n) N
p + O(k2n log2
n
n1/d )
13 / 27
4*
H-matrix approximation of covariance matrices
Example: H-matrix approximation of covariance
matrices
Can be applied for efficient computing the Karhunen-Loeve
Expansion (need to solve a large eigenvalue problem), and
for generating large random fields (Cholesky and MV product)
14 / 27
4*
Examples of H-matrix approximates of cov(x, y) = e−2|x−y|
25 20
20 20
20 16
20 16
20 20
16 16
20 16
16 16
4 4
20 4 32
4 4
16 4 32
4 20
4 4
4 16
4 4
32 32
20 20
20 20 32
32 32
4 3
4 4 32
20 4
16 4 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
20 16
4 4
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4
20 4 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
4 20
4 4 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
20 20
20 20 32
32 32
4 4
20 4 32
32 32
4 20
4 4 32
32 32
20 20
20 20 32
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4 44 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
4 4
4 4 4
4 4
32 4
32 32 4
4 4
4 4
4 4
4 4 4
4
32 4
32 32
4 4
4 4
4 4
4 4
4 4 4
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
4 4
4 4
4 4
4 4
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
4
4 4
4 4
4 4
4 4
4 4
32 32
4 32 4
4
4 3
4 4
4 4
4 4
4
32 32
4 32
4 4
4
4 4
4 4
4 4
4 4
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
4
4 4
4 4
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
32 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
32 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 4
32 32
32 4
32 4
32 4
32 32
32 4
32 4
32 32
4 32
32 32
4 32
32 32
4 4
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
25 11
11 20 12
13
20 11
9 16
13
13
20 11
11 20 13
13 32
13
13
20 8
10 20 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
20 10
10 20 12
12 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
32 13
13 32
13
13
20 9
9 20 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
Figure : H-matrix approximations ∈ Rn×n
, n = 322
, with standard (left)
and weak (right) admissibility block partitionings. The biggest dense
(dark) blocks ∈ Rn×n
, max. rank k = 4 left and k = 13 right.
15 / 27
4*
H - Matrices
Dependence of the computational time and storage requirements
of CH on the rank k, n = 322.
k time (sec.) memory C−CH 2
C 2
2 0.04 2e + 6 3.5e − 5
6 0.1 4e + 6 1.4e − 5
9 0.14 5.4e + 6 1.4e − 5
12 0.17 6.8e + 6 3.1e − 7
17 0.23 9.3e + 6 6.3e − 8
The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8
(Bytes).
16 / 27
4*
Examples of covariance functions
The random field requires to specify its spatial correl. structure
covf (x, y) = E[(f (x, ·) − µf (x))(f (y, ·) − µf (y))],
where E is the expectation and µf (x) := E[f (x, ·)].
Let h = 3
i=1 h2
i / 2
i , where hi := xi − yi , i are cov. lengths.
Gaussian cov(h) = σ2 · exp(−h2),
exponential cov(h) = σ2 · exp(−h),
spherical
cov(h) =
σ2 · 1 − 3
2
h
hr
+ 1
2
h3
h3
r
for 0 ≤ h ≤ hr ,
0 for h > hr .
17 / 27
4*
Other Applications
1. Matrix exponential allows us to solve ODEs
˙x(t) = Ax(t), x(0) = x0, → x(t) = exp (tA)x0
2. Other matrix function: use representation by the Cauchy
integral
f (A) =
1
2πi Γ
f (t)(A − tI)−1
dt
and exponentially convergent quadrature rule [Hackbusch, TR
4/2005, MPI]
f (A) ≈
k
j=1
wj f (tj )(A − tj I)−1
to obtain an approximation.
18 / 27
4*
Matrix equations
(Arises in the context of optimal control problems)
(Lyapunov) AX + XAT
+ C = 0, (3)
(Sylvester) AX − XB + C = 0, (4)
(Riccati) AX + XAT
− XFX + C = 0. (5)
where A, B, C, F are given matrices and X is the solution (a
matrix).
19 / 27
4*
Solution of the Sylvester equations
Theorem
Let A ∈ Rn×n, B ∈ Rm×m, and let σ(A) < σ(B), then
X :=
∞
0
exp(tA)C exp(−tB)dt (6)
solves the Sylvester equation.
And with some special quadrature formulas [Hackbusch, TR 4/2005,
MPI]
Xk :=
k
j=0
wj exp(tj A)C exp(−tj B). (7)
fulfills X − Xk < CA,B C 2 exp(−
√
k).
20 / 27
4*
Estimation of H-matrix rank of Xk
Lemma
If C ∈ H(T, kC ), exp(tj A) ≈ Aj ∈ H(T, kA),
exp(−tj B) ≈ Bj ∈ H(T, kB), for all tj (see more in [Gavrilyuk et al
2002, and Grasedyck et al 2003]) then
Xk ∈ H(T, kX ), kX = O(kp2
max{kA, kB, kC }). (8)
Numerically Xk can be found by a) matrix exponential b) multigrid
c) meta method (ADI); d) matrix sign function (see more
H-matrix lecture notes, Ch. 10).
21 / 27
4*
Future work
1. Parallel H-matrix implementation on multicore systems and
on GPUs
2. H-matrix approximation of large covariance matrices (Mat´ern)
3. determinant and trace of an H-matrix
Kullback-Leibler divergence (KLD) DKL(P Q) is measure of the
information lost when distribution Q is used to approximate P:
DKL(P Q) =
∞
−∞
p(x) ln
p(x)
q(x)
dx,
where p, q densities of P and Q. For miltivariate normal
distributions (µ0, Σ0) and (µ1, Σ1)
2DKL(N0 N1) = tr(Σ−1
1 Σ0) + (µ1 − µ0)T
Σ−1
1 (µ1 − µ0) − k − ln
det Σ0
det Σ1
22 / 27
4*
Conclusion
+ Complexity and storage is O(kr n logq
n), r = 1, 2, 3, q = 1, 2
+ Allow to compute f (A) efficiently for some class of functions f
+ Many examples: FEM 1D, 2D and 3D, BEM 1D,2D and 3D,
Lyapunov, Sylvester, Riccati matrix equations
+ Well appropriate to be used as a preconditioner (for iterative
methods)
+ There are sequential (www.hlib.org) and parallel
(www.hlibpro.com) libraries
+ There are A LOT of implementation details!
- Not so easy implementation
- Can be large constants in 3D
23 / 27

Mais conteúdo relacionado

Mais procurados

Systems%20of%20 three%20equations%20substitution
Systems%20of%20 three%20equations%20substitutionSystems%20of%20 three%20equations%20substitution
Systems%20of%20 three%20equations%20substitution
Nene Thomas
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
Sasi Villa
 

Mais procurados (14)

9 chap
9 chap9 chap
9 chap
 
F2 algebraic expression ii
F2   algebraic expression iiF2   algebraic expression ii
F2 algebraic expression ii
 
Who wants to pass this course
Who wants to pass this courseWho wants to pass this course
Who wants to pass this course
 
Al.ex1
Al.ex1Al.ex1
Al.ex1
 
Al.ex2
Al.ex2Al.ex2
Al.ex2
 
Systems%20of%20 three%20equations%20substitution
Systems%20of%20 three%20equations%20substitutionSystems%20of%20 three%20equations%20substitution
Systems%20of%20 three%20equations%20substitution
 
Iit jee question_paper
Iit jee question_paperIit jee question_paper
Iit jee question_paper
 
Number theoretic-rsa-chailos-new
Number theoretic-rsa-chailos-newNumber theoretic-rsa-chailos-new
Number theoretic-rsa-chailos-new
 
Maths05
Maths05Maths05
Maths05
 
Modul bimbingan add maths
Modul bimbingan add mathsModul bimbingan add maths
Modul bimbingan add maths
 
Guia 1
Guia 1Guia 1
Guia 1
 
Integration SPM
Integration SPMIntegration SPM
Integration SPM
 
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONSMa8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
Ma8353 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 

Destaque

Disc seeding in conservation agriculture
Disc seeding in conservation agricultureDisc seeding in conservation agriculture
Disc seeding in conservation agriculture
Jack McHugh
 
Chap8 basic cluster_analysis
Chap8 basic cluster_analysisChap8 basic cluster_analysis
Chap8 basic cluster_analysis
guru_prasadg
 

Destaque (20)

Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Hierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesHierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matrices
 
Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...Likelihood approximation with parallel hierarchical matrices for large spatia...
Likelihood approximation with parallel hierarchical matrices for large spatia...
 
Connection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problemsConnection between inverse problems and uncertainty quantification problems
Connection between inverse problems and uncertainty quantification problems
 
Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications Multi-linear algebra and different tensor formats with applications
Multi-linear algebra and different tensor formats with applications
 
Tensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEsTensor train to solve stochastic PDEs
Tensor train to solve stochastic PDEs
 
Disc seeding in conservation agriculture
Disc seeding in conservation agricultureDisc seeding in conservation agriculture
Disc seeding in conservation agriculture
 
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005My paper for Domain Decomposition Conference in Strobl, Austria, 2005
My paper for Domain Decomposition Conference in Strobl, Austria, 2005
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
ICARDA’s Conservation Agriculture Experiences
ICARDA’s Conservation Agriculture ExperiencesICARDA’s Conservation Agriculture Experiences
ICARDA’s Conservation Agriculture Experiences
 
Chap8 basic cluster_analysis
Chap8 basic cluster_analysisChap8 basic cluster_analysis
Chap8 basic cluster_analysis
 
SOWING AND PLANTING EQUIPMENT
SOWING AND PLANTING EQUIPMENTSOWING AND PLANTING EQUIPMENT
SOWING AND PLANTING EQUIPMENT
 
Why cuba trade delegation
Why cuba trade delegationWhy cuba trade delegation
Why cuba trade delegation
 
Sowing and planting machines
Sowing and planting machinesSowing and planting machines
Sowing and planting machines
 
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017) Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
Low-rank methods for analysis of high-dimensional data (SIAM CSE talk 2017)
 
Definitive casts and dies
Definitive casts and diesDefinitive casts and dies
Definitive casts and dies
 
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
Tensor Completion for PDEs with uncertain coefficients and Bayesian Update te...
 
Cluster analysis
Cluster analysisCluster analysis
Cluster analysis
 
Minimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian updateMinimum mean square error estimation and approximation of the Bayesian update
Minimum mean square error estimation and approximation of the Bayesian update
 
Cluster Analysis
Cluster AnalysisCluster Analysis
Cluster Analysis
 

Semelhante a A small introduction into H-matrices which I gave for my colleagues

New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
Alexander Litvinenko
 
"Polyadic sigma matrices" by S. Duplij, arxiv: 2403.19361
"Polyadic sigma matrices" by S. Duplij,  arxiv: 2403.19361"Polyadic sigma matrices" by S. Duplij,  arxiv: 2403.19361
"Polyadic sigma matrices" by S. Duplij, arxiv: 2403.19361
Steven Duplij (Stepan Douplii)
 

Semelhante a A small introduction into H-matrices which I gave for my colleagues (20)

Data sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve ExpansionData sparse approximation of Karhunen-Loeve Expansion
Data sparse approximation of Karhunen-Loeve Expansion
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 
Class8 calculus ii
Class8 calculus iiClass8 calculus ii
Class8 calculus ii
 
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceFixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric Space
 
Hierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimationHierarchical matrix techniques for maximum likelihood covariance estimation
Hierarchical matrix techniques for maximum likelihood covariance estimation
 
New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...New data structures and algorithms for \\post-processing large data sets and ...
New data structures and algorithms for \\post-processing large data sets and ...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
Common fixed point and weak commuting mappings
Common fixed point and weak commuting mappingsCommon fixed point and weak commuting mappings
Common fixed point and weak commuting mappings
 
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2Observations on Ternary Quadratic Equation z2 = 82x2 +y2
Observations on Ternary Quadratic Equation z2 = 82x2 +y2
 
The Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability DistributionThe Multivariate Gaussian Probability Distribution
The Multivariate Gaussian Probability Distribution
 
Subquad multi ff
Subquad multi ffSubquad multi ff
Subquad multi ff
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
 
Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
Fixed point and weak commuting mapping
Fixed point and weak commuting mappingFixed point and weak commuting mapping
Fixed point and weak commuting mapping
 
Fixed point and weak commuting mapping
Fixed point and weak commuting mappingFixed point and weak commuting mapping
Fixed point and weak commuting mapping
 
Common fixed point theorems with continuously subcompatible mappings in fuzz...
 Common fixed point theorems with continuously subcompatible mappings in fuzz... Common fixed point theorems with continuously subcompatible mappings in fuzz...
Common fixed point theorems with continuously subcompatible mappings in fuzz...
 
"Polyadic sigma matrices" by S. Duplij, arxiv: 2403.19361
"Polyadic sigma matrices" by S. Duplij,  arxiv: 2403.19361"Polyadic sigma matrices" by S. Duplij,  arxiv: 2403.19361
"Polyadic sigma matrices" by S. Duplij, arxiv: 2403.19361
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
A study on number theory and its applications
A study on number theory and its applicationsA study on number theory and its applications
A study on number theory and its applications
 
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
 

Mais de Alexander Litvinenko

Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Alexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Alexander Litvinenko
 

Mais de Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in Houston
 

Último

Último (20)

How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 

A small introduction into H-matrices which I gave for my colleagues

  • 1. Introduction into hierarchical matrix technique Alexander Litvinenko KAUST, SRI-UQ Center http://sri-uq.kaust.edu.sa/ www.hlib.org www.hlibpro.com August 16, 2015
  • 2. 4* My interests and cooperations 2 / 27
  • 3. 4* Content 1. Motivation 2. Low-rank matrices 3. Cluster Tree, Block Cluster Tree and Admissibility condition 4. 1D BEM example 5. Hierarchical matrices: cost and storage 6. Two applications Used: H-matrices Winter School Script (www.hlib.org), PhD thesis of Ronald Kriemann, preprints from www.mis.mpg.de 3 / 27
  • 4. 4* Motivation: Iterative and direct solvers Ax = b Iterative methods: Jacobi, Gauss- Seidel, SOR, ... Direct solvers: Gaussian elimination, domain decompositions, LU,... Cost of A−1 is O(n3), number of iteration is proportional to cond(A). If A is structured (diagonal, Toeplitz, circulant) then can apply e.g. FFT, but if not ? What if you need not only x = A−1b, but f (A) (e.g. A−1, exp A, sinA, signA, ...)? 4 / 27
  • 5. 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 Figure : The H-matrix approximation of the stiffness matrix of the Poisson problem (left) and its inverse (right). The dark blocks are dense matrices. The light blocks are low-rank matrices with maximal rank kmax = 5. 5 / 27
  • 6. 4* Rank-k matrices M ∈ Rn×m, U ≈ ˜U ∈ Rn×k, V ≈ ˜V ∈ Rm×k, k min(n, m). The storage ˜M = ˜U ˜Σ ˜V T is k(n + m) instead of n · m for M represented in the full matrix format. U VΣ T=M U VΣ∼ ∼ ∼ T =M ∼ Figure : Reduced SVD, only k biggest singular values are taken. 6 / 27
  • 7. 4* H-matrices (Hackbusch ’99) 1. Build cluster tree TI and block cluster tree TI×I . I I I I I I I I I I1 1 2 2 11 12 21 22 I11 I12 I21 I22 7 / 27
  • 8. 4* Admissible condition 2. For each (t × s) ∈ TI×I , t, s ∈ TI , check admissibility condition min{diam(Qt), diam(Qs)} ≤ η · dist(Qt, Qs). if(adm=true) then M|t×s is a rank-k matrix block if(adm=false) then divide M|t×s further or de- fine as a dense matrix block, if small enough. Q Qt S dist H= t s Resume: Grid → cluster tree (TI ) + admissi- bility condition → block cluster tree (TI×I ) → H-matrix → H-matrix arithmetics. 4 2 2 2 3 3 3 4 2 2 2 4 2 2 2 4 8 / 27
  • 9. 4* Where does the admissibility condition come from? Let B1, B2 ⊂ Rd are compacts, and χ(x, y) is defined for (x, y) ∈ B1 × B2 with x = y. Let K be an integral operator with an asymptotic smooth kernel χ in the domain B1 × B2: (Kv)(x) = B2 χ(x, y)v(y)dy (x ∈ B1). Suppose that χ(k)(x, y) is an approximation of χ in B1 × B2 of the separate form: χ(k) (x, y) = k ν=1 ϕ(k) ν (x)ψ(k) ν (y), where k is the rank of separation. Then χ − χ(k) ∞,B1×B2 ≤ c1 c2min{diam(B1),diam(B2)} dist(B1,B2) k . 9 / 27
  • 10. 4* H-Matrix Approximation of BEM Matrix Consider the following integral equation 1 0 log |x − y|U(y)dy = F(x), x ∈ (0, 1). After discretisation by Galerkin’s method we obtain 1 0 1 0 φi (x) log |x − y|U(y)dydx = 1 0 φi (x)F(x)dx, 0 ≤ i < n, in the space Vn := span{φ0, ..., φn−1}, where φi , i = 1, ..., n − 1, are some basis functions in BEM. The discrete solution Un in the space Vn is Un := n−1 j=0 uj φj with uj being the solution of the linear system 10 / 27
  • 11. Gu = f , Gij := 1 0 1 0 φi (x) log |x − y|φj (y)dydx, fi := 1 0 φi (x)F(x)dx. (1) We replace the kernel function g(x, y) = log |x − y| by a degenerate kernel ˜g(x, y) = k−1 ν=0 gν(x)hν(y). (2) Then we substitute g(x, y) = log |x − y| in (1) for ˜g(x, y) ˜Gij := 1 0 1 0 φi (x) k−1 ν=0 gν(x)hν(y)φj (y)dydx. After easy transformations ˜Gij := k−1 ν=0 ( 1 0 φi (x)gν(x)dx)( 1 0 hν(y)φj (y)dy). 11 / 27
  • 12. Now, all admissible blocks G|(t,s) can be represented in the form G|(t,s) = ABT , A ∈ R|t|×k , B ∈ R|s|×k , where the entries of the factors A and B are Aiν := 1 0 φi (x)gν(x)dx, Bjν := 1 0 φj (y)hν(y)dy. We use the fact that the basis functions are local and obtain for all inadmissible blocks: ˜Gij := (i+1)/n i/n (j+1)/n j/n log |x − y|dydx. 12 / 27
  • 13. 4* Storage and complexity (single proc. and p-proc. on shared mem.) Let H(TI×J, k) := {M ∈ RI×J | rank(M |t×s) ≤ k for all admissible leaves t × s of TI×J}, n := max(|I|, |J|, |K|). Operation Sequential Compl. Parallel Complexity (R.Kriemann 2005) building(M) N = O(n log n) N p + O(|V (T)L(T)|) storage(M) N = O(kn log n) N Mx N = O(kn log n) N p + n√ p αM ⊕ βM N = O(k2n log n) N p αM M ⊕ βM N = O(k2n log2 n) N p + O(Csp(T)|V (T)|) M−1 N = O(k2n log2 n) N p + O(nn2 min) LU N = O(k2n log2 n) N H-LU N = O(k2n log2 n) N p + O(k2n log2 n n1/d ) 13 / 27
  • 14. 4* H-matrix approximation of covariance matrices Example: H-matrix approximation of covariance matrices Can be applied for efficient computing the Karhunen-Loeve Expansion (need to solve a large eigenvalue problem), and for generating large random fields (Cholesky and MV product) 14 / 27
  • 15. 4* Examples of H-matrix approximates of cov(x, y) = e−2|x−y| 25 20 20 20 20 16 20 16 20 20 16 16 20 16 16 16 4 4 20 4 32 4 4 16 4 32 4 20 4 4 4 16 4 4 32 32 20 20 20 20 32 32 32 4 3 4 4 32 20 4 16 4 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 20 16 4 4 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 20 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 4 20 4 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 20 20 20 20 32 32 32 4 4 20 4 32 32 32 4 20 4 4 32 32 32 20 20 20 20 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 44 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 4 4 4 3 4 4 4 4 4 4 4 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 4 4 4 4 4 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 32 32 32 4 32 4 32 4 32 32 32 4 32 4 32 32 4 32 32 32 4 32 32 32 4 4 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 11 11 20 12 13 20 11 9 16 13 13 20 11 11 20 13 13 32 13 13 20 8 10 20 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 20 10 10 20 12 12 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 32 13 13 32 13 13 20 9 9 20 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 Figure : H-matrix approximations ∈ Rn×n , n = 322 , with standard (left) and weak (right) admissibility block partitionings. The biggest dense (dark) blocks ∈ Rn×n , max. rank k = 4 left and k = 13 right. 15 / 27
  • 16. 4* H - Matrices Dependence of the computational time and storage requirements of CH on the rank k, n = 322. k time (sec.) memory C−CH 2 C 2 2 0.04 2e + 6 3.5e − 5 6 0.1 4e + 6 1.4e − 5 9 0.14 5.4e + 6 1.4e − 5 12 0.17 6.8e + 6 3.1e − 7 17 0.23 9.3e + 6 6.3e − 8 The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 (Bytes). 16 / 27
  • 17. 4* Examples of covariance functions The random field requires to specify its spatial correl. structure covf (x, y) = E[(f (x, ·) − µf (x))(f (y, ·) − µf (y))], where E is the expectation and µf (x) := E[f (x, ·)]. Let h = 3 i=1 h2 i / 2 i , where hi := xi − yi , i are cov. lengths. Gaussian cov(h) = σ2 · exp(−h2), exponential cov(h) = σ2 · exp(−h), spherical cov(h) = σ2 · 1 − 3 2 h hr + 1 2 h3 h3 r for 0 ≤ h ≤ hr , 0 for h > hr . 17 / 27
  • 18. 4* Other Applications 1. Matrix exponential allows us to solve ODEs ˙x(t) = Ax(t), x(0) = x0, → x(t) = exp (tA)x0 2. Other matrix function: use representation by the Cauchy integral f (A) = 1 2πi Γ f (t)(A − tI)−1 dt and exponentially convergent quadrature rule [Hackbusch, TR 4/2005, MPI] f (A) ≈ k j=1 wj f (tj )(A − tj I)−1 to obtain an approximation. 18 / 27
  • 19. 4* Matrix equations (Arises in the context of optimal control problems) (Lyapunov) AX + XAT + C = 0, (3) (Sylvester) AX − XB + C = 0, (4) (Riccati) AX + XAT − XFX + C = 0. (5) where A, B, C, F are given matrices and X is the solution (a matrix). 19 / 27
  • 20. 4* Solution of the Sylvester equations Theorem Let A ∈ Rn×n, B ∈ Rm×m, and let σ(A) < σ(B), then X := ∞ 0 exp(tA)C exp(−tB)dt (6) solves the Sylvester equation. And with some special quadrature formulas [Hackbusch, TR 4/2005, MPI] Xk := k j=0 wj exp(tj A)C exp(−tj B). (7) fulfills X − Xk < CA,B C 2 exp(− √ k). 20 / 27
  • 21. 4* Estimation of H-matrix rank of Xk Lemma If C ∈ H(T, kC ), exp(tj A) ≈ Aj ∈ H(T, kA), exp(−tj B) ≈ Bj ∈ H(T, kB), for all tj (see more in [Gavrilyuk et al 2002, and Grasedyck et al 2003]) then Xk ∈ H(T, kX ), kX = O(kp2 max{kA, kB, kC }). (8) Numerically Xk can be found by a) matrix exponential b) multigrid c) meta method (ADI); d) matrix sign function (see more H-matrix lecture notes, Ch. 10). 21 / 27
  • 22. 4* Future work 1. Parallel H-matrix implementation on multicore systems and on GPUs 2. H-matrix approximation of large covariance matrices (Mat´ern) 3. determinant and trace of an H-matrix Kullback-Leibler divergence (KLD) DKL(P Q) is measure of the information lost when distribution Q is used to approximate P: DKL(P Q) = ∞ −∞ p(x) ln p(x) q(x) dx, where p, q densities of P and Q. For miltivariate normal distributions (µ0, Σ0) and (µ1, Σ1) 2DKL(N0 N1) = tr(Σ−1 1 Σ0) + (µ1 − µ0)T Σ−1 1 (µ1 − µ0) − k − ln det Σ0 det Σ1 22 / 27
  • 23. 4* Conclusion + Complexity and storage is O(kr n logq n), r = 1, 2, 3, q = 1, 2 + Allow to compute f (A) efficiently for some class of functions f + Many examples: FEM 1D, 2D and 3D, BEM 1D,2D and 3D, Lyapunov, Sylvester, Riccati matrix equations + Well appropriate to be used as a preconditioner (for iterative methods) + There are sequential (www.hlib.org) and parallel (www.hlibpro.com) libraries + There are A LOT of implementation details! - Not so easy implementation - Can be large constants in 3D 23 / 27