SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
Journal of Biology, Agriculture and Healthcare www.iiste.org
ISSN 2224-3208 (Paper) ISSN 2225-093X (Online)
Vol.3, No.11, 2013
6
Seasonal Changes on Termite Foraging Behaviour under
Different Habitats in Rufiji District Tanzania.
Christopher Materu1*
& Jacob Yarro,2
Bruno Nyundo,2
1. Christopher L. Materu, P O Box 6226, Mikocheni Agricultural Research Institute Tanzania
2. Bruno A. Nyundo & Jacob G. Yarro P O Box 35064, University of Dar Es Salaam
*chrismateru@yahoo.com, bnyundo@uccmail.co.tz and jgyarro@uccmail.co.tz
Abstract
The effect of wet and dry season on termites foraging was examined in cropland, forest and grassland in Rufiji
district for a period of one year. Termites species richness as well as abundance were sampled using standardized
transect lines. Sampling was carried out on monthly basis. Termite species abundance was significantly different
between the three locations, but species richness was not significantly different. These results reveal that termite
abundance was higher in disturbed habitat due to the removal of vegetation which denies termites food and areas
for nesting. Furthermore movement of termites from lower horizons during the wet season was higher than in the
dry season.
Key words: Termites activity, abundance, species richness, Rufiji district.
1. Introduction
The effect of seasonal changes on termites foraging in different habitats in Rufiji district is poorly studied despite
the influence of termites on decomposition of organic matter and nutrient cycling (Park et al. 1996). For example,
studies carried out in Malaysia observed that termites are more abundant in the forest and grassland sites during
the wet season than during the dry season (Lee & Wood 1971). Studies related to effects of humans on tropical
rainforest biodiversity have shown that species richness declines due to human activities (Lawton et al. 1998).
Seasonal weather variation in tropical forest areas have been reported by Eggleton & Bignell, (1995). The direct
effect of rainfall arises from the physical effects of large amounts of water falling on litter fauna and forest floor
litter (Chiba et al. 1975). Termites are regarded as decomposers of wood in tropical forests, (Wood & Sands
1978); and in savannah (Holt, 1987). These functions are dependent on the species assemblage, structure of the
termite community (Lawton et al. 1996). Reduced ground cover vegetation results in increased colony
establishment of some African Macrotermitinae. Termites form a component of the ecosystem and hence their
foraging activity is seasonal for most termite species. Seasonal food availability influences termite foraging
activity hence a higher foraging activity in the wet season than in the dry season. Termites foraging is mainly for
food searching during the wet season and highly reduced during dry season. Therefore exposure of termites on
the soil surface during dry season may lead to desiccation (Creffield, 1991). The common food storage is faeces
and fungal comb in Microtermitinae sub-family or as carton in other species. The studied sub-terranean termite
species forage and store food that will be consumed the following season. On opening the termites nest you will
find out that termites are divided into groups known as castes ie reproductives, workers and soldiers (Creffield,
1991). The role of reproductives is to lay more eggs for the expansion of the colony members, while workers
play a role of food searching, nest repair, construction and feeding of the young ones while soldiers characterised
with big mandibles responsible for defending the colony members from natural enemies. Currently no
comprehensive studies on termite foraging behaviour depending on seasonal changes have been conducted. This
study was carried out in three different habitats i.e. grassland, cropland and in a primary forest from October,
2010 to November 2011 in Rufiji district.
2. Materials and Methods
The study on termite species richness and abundance was carried out using standardized transect lines (Eggleton,
1996). The transect lines were able to provide quick information on different termite species present in the
selected habitats. The district is located 178 km south of Dar es Salaam and covers an area of about 53,000 ha.
The prominent feature of the district is the Rufiji River, an eponym for the district. The study area lies between
7o
27´S - 8 o
27´S and 37o
52´E - 39o
28´ E. The district has a bimodal rainfall pattern, the long rains are between
March and June and the short between October and December. The district receives an average rainfall of about
1,100 mm/year Temperatures range from 25o
C to 35o
C and are highly influenced by monsoon winds, which
bring rains. The distribution of forest in the district greatly influences the rainfall patterns. There is no weather
station at each selected site but the rainfall data was obtained from the Tanzania Meteorological Weather Agency.
The key selection criteria of the study sites were size and habitat complexity. Large areas were expected to have
more species than small areas and the greater the habitat complexity the higher the diversity. Therefore, different
habitat types including grassland, forested land and coconut farms of different ages were selected for termite
Journal of Biology, Agriculture and Healthcare www.iiste.org
ISSN 2224-3208 (Paper) ISSN 2225-093X (Online)
Vol.3, No.11, 2013
7
sampling.
All selected habitat types were below 500m above sea level. Study locations were randomly selected to cover
various habitats in the district. Standard transect line 200 m with 5 m wide were used during data collection
(Eggleton et al. 1996). Termite abundance and richness were regarded as data, and these were used to compare
variation among or between habitats (Whittaker, 1972). Termite sampling was carried out when termite activity
was high between 0730 to 1200 noon and 1600 when temperatures were also cool. Insect sampling was carried
for a period of one year on monthly basis. Sampling during rainfall was carried out after three days to avoid the
effect of rain on termite foraging activity. Termite samples from each quadrat were collected and preserved in
labelled vials containing 70% ethanol for later identification.
3. Data Analysis
The species diversity (abundance and species richness) in different sites was calculated by using the Shannon
Weaver Index (H′) (Zar, 1999). The Shannon-Weaver Index takes into account the number of species in the
community (species richness) and the number of individuals per species. The index H′ is calculated as follows: H′
= -Σ pi ln pi, where pi = proportion of total sample belonging to the ith
species.
Species diversity has two main important components namely species richness and equitability. Species
equitability is related to dominance relationship. The Species evenness or equitability was calculated by E =
H′/lnS or E = H′/H′max (Zar, 1999). Where:
• E is evenness or equitability of species
• H′ is the observed species diversity
• The diversity of species in various habitats between seasons and between habitat types was compared
by Mann-Whitney test (Zar, 1999). Analysis of variance among the habitat types was computed using
Kruskal-Wallis test. The U–test was used to compare termite abundance between habitat types. Chi-
square test was used to compare species richness sampled from the selected study areas.
•
3.1 Taxonomy
Termites species collected were examined under dissecting microscope using identification keys (Bouilon, &
Mathot, 1965; Pearce et al. 1992). Termite soldiers were used to identify termite species and estimate their
relative abundance. Termites without soldiers were excluded from the analysis.
4. Results
4.1 The termite abundance in the study habitats during wet and dry season
During the entire period of this study a total of 26,149 termites were recorded with their respective mean
averages i.e. termites from the cropland, grassland and forest habitats, respectively (Table 1). Comparison of
termites abundance was done using the Kruskal-Wallis test which showed statistically significant differences in
abundance (P = 0.0427) (Table 2).
4.2 Comparison of termite abundance between pairs of habitat types
Termite abundance between cropland and forest habitats was significantly different (U = 55.500 and 162.500, p
= 0.0353). Comparison of cropland and grassland habitats also showed significant differences in termite
abundance (U = 36.000 and 55.000, p = 0.031). However, there was no significant difference in termite
abundance between the forest and the grassland habitats (Table 2). Species diversity as well as evenness during
wet and dry season was summarised in Table 3 and Table 4.
4.3 Species richness
The highest number of species was recorded from the forest habitat (16), followed by cropland (13) and the least
was grassland (7) (Table 3). However there was no significant difference in species richness (χ2
= 1.68, p > 0.05).
Overall, termite species richness was higher during the wet season than during dry season. During the study
period termite species richness was higher in the forest habitat than cropland as well as in grassland habitat Table
3 provides an overview of species richness in different habitats during wet and dry season. Termite species
richness was 19%, 36% and 44% for grassland, cropland and forest habitats respectively. The species richness
was lowest in the grassland possibly because of human activities. In the cropland, for example, the most
important genera were the Microtermes alluaudanus Microcerotermes brachygnathus and Macrotermes
bellicosus which were feeding on dead cassava plants, maize straws left in the field from previous harvest, dead
tree stumps and dead tree logs. Pseudacanthotermes militaris Nasutitermes kempae) and Odontotermes sp was
found at much lower densities and were feeding on dead tree stumps and dead tree logs. Fastigitermes jucundus
Cubitermes glebae and Termers bolivianus were feeding on damp decomposing wood material and soil. It was
found that soil and wood feeding termite species were equally represented in all habitat types.
4.4 The termite abundance in the study habitats during wet and dry season
Termite individuals were more abundant during wet season than during the dry season. The increase in numbers
Journal of Biology, Agriculture and Healthcare www.iiste.org
ISSN 2224-3208 (Paper) ISSN 2225-093X (Online)
Vol.3, No.11, 2013
8
ranged from about 4,000 in grassland to 16,000 individuals from cropland. Forest and grassland habitat had
fewer termites numbers than crop land habitats. Termite abundance in coconut farms and nurseries was high
during the wet season compared to the dry season. The cropland habitats were planted with annual and perennial
crops i.e cassava, maize, pineapples and young coconut seedlings. Intercropping of coconut trees with citrus was
practiced by farmers in all crop land habitats. There was high termite abundance in cropland habitat and low
species richness. Cropland and grassland habitats had low species richness too. In the grassland habitat
Cubitermes sp were recorded during both seasons. More soil feeding termite genera were thus encountered
during the wet season than during dry season in all the habitat types although the seasonal differences were not
significantly different.
Microtermes sp. was recorded during entire period of this study in all the habitat types. Furthermore,
Pseudacanthotermes sp. was recorded in all habitats during both seasons except in the grassland habitats. Fungus
growing termite species were more tolerant to drought and their nests were also located at positions deep enough
down the soil out of reach of farm operation activities. In some areas where colonies were disturbed by farm
operations like frequent cultivation. Apart from this, there were dead stumps and roots in the cropland which
provided plenty of food for fungus growing termites all the year around.
5. Discussions
5.1 The termite abundance in the study habitats during wet and dry season
Alterations in the environment from forest habitat to grassland or agriculture activities have an influence on food
availability, presence/absence of natural enemies and nesting habit (Holloway et al. 1992). The increase in
termites numbers was not uniform from one habitat to another, the numbers were probably influenced by the
abundance of food. Most of the food in the forest consists of leaf litter, wood, woody stumps and decaying wood
material which change very little. Un-weeded cultivated cropland resembles the forest habitat in terms of food
availability. Thus in an ecologically stable ecosystem where food availability is more or less stable, fluctuations
in termite abundance are minimal. Termite abundance in coconut farms and nurseries was highly influenced by
the weather and various field operations in the farms including nursery husbandry practices. Forest clearing,
burning, tillage operation, weed management and the type of crop grown may strongly impact on termite
abundance as well as on species richness in Rufiji district. Similar results were reported by Abe & Watanabe
(1983), on soil macro fauna in subtropical rain forest and its adjacent cassava plantation in Okinawa- with
special reference to the activity of termites. Similar studies carried out in Southern Cameroon showed that there
was an increase of termite abundance in relation to forest disturbance although species richness collapsed along
with land use (Pinheiro et al. 2002; Abensperg-Traun & Smith 1999). Intercropping maximizes land use but
from the point of view of termites it increases biomass through accumulation of crop residues and dead trees
providing abundant sources of food for different termite species.
Crop diversity influences termite richness and abundance under different land use system. Studies carried out in
the Mbalmayo Forest Reserve, southern Cameroon have shown that the diversity, abundance and biomass of
termites differ under different levels of anthropogenic disturbance (Eggleton et al. 1996).
These findings are in agreement with results reported from the effects of habitat fragmentation on Amazonian
termite communities (De Souza & Brown 1994) and Mabira forest in Uganda (Okwakol, 2000). It has also been
reported in Indonesia where species richness was negatively correlated with the removal of canopy cover (Jones
& Eggleton 2000). Conversion of forest areas to agriculture results in habitat loss and severe changes in water
holding capacities (Black et al. 1997), thereby putting soil organism at risk. Termite activity is also influenced
by changes in the organic matter and its quality (Wood et al. 1977). Loss of habitat can also be brought about by
setting fires which remove leaf litter materials thus destroying suitable condition for soil inhabiting organisms
including soil feeding termites. Indeed presence of leaf litter in grassland, forest or in cropland area is important
because leaf litter acts as mulch and retains soil moisture or source of organic matter, creating a favourable
environment for termites. Similarly, the effect of free range grazing and overgrazing in grassland habitats leads
to reduction in the number of species in the habitat during both seasons. Wood (1975), reported that decline of
termite species richness in grassland habitats and croplands is due to various human activities.
5.2 Termite species richness
With regard to the cropland, the areas under cultivation might have been part of a more extensive forest whose
canopy was cleared to give way to agriculture which negatively changed the physical and biological complexity
of the area resulting in reduced species richness. High temperatures in cropland habitats raise the soil
temperature, making sub-terannean termite species to move deeper into the soil, influencing termite foraging
activities as well as the number of species observed on the soil surface at the time of sampling. Kumar (1991),
observed that termite foraging activity varies seasonally with weather conditions.
Drought is one of the major factors influencing termite foraging because soil moisture is related to termite
foraging such that high temperatures on the soil surface and low soil moisture content, will cause a raise in soil
Journal of Biology, Agriculture and Healthcare www.iiste.org
ISSN 2224-3208 (Paper) ISSN 2225-093X (Online)
Vol.3, No.11, 2013
9
temperature causing termites to shift from the surface area to deeper soil horizons. There were no significantly
differences between the seasons in terms of species richness. Studies carried out in northern California showed
that there was seasonal foraging behaviour of Reticulitermes sp. (Rhinotermitidae) (Haverty et al. 1974).
5.3 Termite species diversity and evenness
Species diversity and evenness, a measure of proportional diversity, was determined by employing the Shannon
Weaver as a test statistic for a model that is neutral with respect to physical, functional, and biotic interactions.
The results from this study indicated that the habitat with high diversity figures also had the highest termite
richness as well as evenness. The intercropping system practiced in the cropland habitat studied, could have been
mimicking the forest habitat because the species evenness in the two habitats were not significantly different.
The termite species were evenly distributed in all habitats, this is probably because the habitats were not located
far away from each other.
6. Conclusion
The present study was carried out in grassland, forest and cropland habitats whereby the forest habitat had the
highest termite species richness. Due to higher biomass productivity in the forest areas many termite species
were able to share available food resources when compared to the grassland and cropland habitats leading to
higher species richness, diversity and evenness. Termites abundance was observed to be high in the cropland
habitat probably alteration of the natural forest reduce competition for ecological resources. The results of this
work will assist researchers to plan well on termite sampling when taking into consideration of seasonal effect on
termite species richness, abundance and diversity. Further studies are needed to cover more diverse agro-
ecological regions to identify termite species richness and diversity and how they interact with the environment.
Acknowledgements
The authors would like to thank Ministry of Agriculture and Food Security for financial support for this study.
Many thanks are also extended to the District Administrative Council for their courage to allow this study to be
carried out in their district. Many thanks to Mr. Pius Quangwa, Erick Jorime, and Mr. Sallum Mussa for assisting
during site selection, experiment set up, termite sampling and sorting. Many thanks to Dr. Linus Masumbuko for
his advice and reviewing this work and Mr. Suya from the University of Dar es salaam for identification of
termite species.
References
Abe, T. & Watanabe, H. (1983), Soil Macro fauna in Subtropical rain forest and its adjacent cassava plantation
in Okinawa- with special reference to the activity of termites. Physiology of Ecology Japan 20:101-114.
Abensperg-Traum, M & Smith , G. T. (1999), How small is too small for small animals? Four terrestrial
arthropod species in different-size remnant woodlands in agricultural wetern Australia-Biodivesity. Conservation
8:709-726.
Bouilon, A. & G. Mathot, (1965), Identification keys for termites occurring in East Africa.
Black, H. I. J. & Okwakol, M. J. N. (1997), Agricultural Intensification, soil biodiversity and agro ecosystem
function in the tropics: the role of decomposer biota. Applied Soil Biology 6: 37-53.
Creffield, J.W. (1991), Wood-destroying insects, wood borers, and termites. Collingwood VIC, Australia:
CSIRO Publishing.
Chiba S, Abe, T., Aoki J., Imadate G, Ishikawa, K., Kondoh M., Shiba, M. & Watanabe, H. (1975), Studies on
the productivity of soil animals in Pasoh Forest Reserve, West Malaysia, Hirosaki University Science Reports 22:
87-124.
De Souza, O. F. F. & Brown., V. K. (1994), Effects of habitat fragmentation on Amazonian termite communities.
Journal of Tropical Ecology 10(2): 197-206.
Eaggleton, P. & Bignell, D. E. (1995), Monitoring the response of tropical insects to changes in the
environments: troubles with termites. In: Harrington, R. and Stork, N. E (eds) Insects in a Changing
Environment. Academic Press, London, UK, PP. 473-497.
Eggleton, P., Bignell, D. E., Sands, W. A., Mawdsley, N. A., Lawton, J. H., Wood, T. G. & Bignell, N. C. (1996),
The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest
Reserve southern Cameroon Philosophical Transactions of the Royal Society of London, Series B 35: 561-68.
Haverty, M. I.; Lafage, J. & Nutting, W. L. (1974), Seasonal activity and environmental control of foraging of
the subterranean termites Heterotermes aureus (Synder) in desert grassland. Life Science 15:1091-1101.
Holloway, J. D. A; A. H. Kirk Sprigs, & Chey V. K. (1992), The response of rainforest insect groups to logging
and conversion to plantation. Philosophical Transactions of the Royal Society 335, 425-436.
Holt, J. A. (1987), Carbon mineralization in semi arid northern eastern Australia. The role of termites. Journal of
Tropical Ecology 3: 255-263.
Journal of Biology, Agriculture and Healthcare www.iiste.org
ISSN 2224-3208 (Paper) ISSN 2225-093X (Online)
Vol.3, No.11, 2013
10
Jones, D. T. & Eggleton, P. (2000), Sampling termite assemblages in tropical forests: testing a rapid biodiversity
assessment protocol. Journal of Applied Ecology 37:191-203.
Kumar, N. G. (1991), Studies on the ecology of the subterranean Odontotermes horni (Wasmann) (Isoptera:
Termitidae) and its foraging effects on the soil nutrient status. PhD Thesis, University of Agricultural Sciences,
Bangalore. 254pp.
Lawton, J., H. Bignell, D. E., Blomers, G. F., Eggleton, P & Honda, M. E. (1996), Carbon flux and diversity of
nematodes and termites in Cameroon forest soils. Biodiversity Conservation 5: 261-273.
Lawton, J. H., Bignell, D. E., Bolton, B., Bloemers, G.F., Eggleton P., Hammond, P.M., Hodda, M, Holt, R. D.,
Larsen., T. B., Mawdsley, N. A., Stork NE., Srivastava, D. S. & Watt, A. D. (1998), “Biodiversity inventories,
indicator taxa and effects of habitat modification in tropical forest”, Nature, 391(6662): 72-76
Lee, K. E. & Wood, T. G. (1971), Termites and soils. Academic press. PP. 252 New York and London:
Academic Press.
Okwakol, M. J. N. (2000), Changes in termite (Isoptera) communities due to the clearance and cultivation of
topical forest in Uganda. African Journal of Ecology 38, 1-7
Park, H.C., Orsini, J.P.G., Majer, J.D. & Hobbs, R. J. (1996), A model of litter harvesting by the Western
Australian wheat belt termite, Drepanotermes tamminensis (Hill), with particular reference to nutrient dynamics.
Ecological Research 11 (1): 69-78.
Pearce, M.J., Bacchus, S. & Logan, J.W.M. (1992), What Termite?: A Guide to Identification of Termite Pest
Genera in Africa. Natural Resources Institute, UK.
Pinheiro, F., I. R., Diniz., Coelho, D. & Bandeira M. P. S. (2002), Seasonal patterns of insect abundance in the
Brazilian cerrado. Journal of Australian Ecology. 27:132–136.
Wood, T. G. & Sands, W. A. (1978), The role of termites in ecosystems. Pp. 245-292 in Brian, M. V. (ed.)
Production ecology of ants and termites. Cambridge University Press, Cambridge.
Wood, T. G. (1975), The effects of clearing and grazing on the termite fauna (Isoptera) of tropical savannas and
woodlands. In: Progress in soil zoology , procs5th Int.Coll.on, soil Zoology. (Ed.G. Vanek).pp. 409-413.
Academic. Prague.
Wood, T. G., Johnson, R. A. & Ohiagu, C. E. (1977), Populations of termites (Isoptera) in natural and
agricultural ecosystem in a southern Guinea savannah near Mokwa, Nigeria. Geo-Eco Tropical 1(2): 139-148.
Zar, J. H. (1999), Biostatistical analysis 4th
Ed. Prentice-Hall, Inc. Englewood cliffs, New Jersey, USA.
Journal of Biology, Agriculture and Healthcare www.iiste.org
ISSN 2224-3208 (Paper) ISSN 2225-093X (Online)
Vol.3, No.11, 2013
11
Table 1: Termites abundance (total number of individuals) in the three habitat types (n = number of quadrates)
during wet and dry season
Habitat type Termites abundance wet season
(mean)
Termites abundance dry season
(mean)
Cropland (n=160) 16,820 ± 105 5,307 ±.33.1
Forest (n=40) 4,622 ± 115.5 1,308 ± 32.7
Grassland (n=40) 4,707 ±117.7 694 ± 17.35
Table 2: Comparison of termite abundance between habitat types (cropland, grassland and forest) in Rufiji
district
Habitat pairs U-Statistic U’ P Significance
Crop vs forest 55.500 162.500 0.0353 *
Crop vs grass 36.000 55.000 0.031 *
Forest vs grass 36.000 76.000 0.1977 ns
Table 3: Pair wise comparison of species diversity (H′) during wet and dry season
Habitat Species richness Wet season species
diversity (H′)
Dry season species diversity
(H′)
Cropland 13 2.0485 1.7432
Forest 16 2.2836 1.8724
Grassland 7 1.4854 1.2669
The pair wise comparison showed that there was no significant difference between the seasons (U= 10.500 and
U’ = 25.500, P>0.05).
Table 4: Species evenness during wet and dry season
Habitat Species richness Wet season Species
Evenness (J)
Dry season
Species
Evenness (J)
Cropland 9 0.73885 0.62872
Forest 9 0.82362 0.67534
Grassland 5 0.53573 0.0458
This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.
More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org
CALL FOR JOURNAL PAPERS
The IISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. There’s no deadline for
submission. Prospective authors of IISTE journals can find the submission
instruction on the following page: http://www.iiste.org/journals/ The IISTE
editorial team promises to the review and publish all the qualified submissions in a
fast manner. All the journals articles are available online to the readers all over the
world without financial, legal, or technical barriers other than those inseparable from
gaining access to the internet itself. Printed version of the journals is also available
upon request of readers and authors.
MORE RESOURCES
Book publication information: http://www.iiste.org/book/
Recent conferences: http://www.iiste.org/conference/
IISTE Knowledge Sharing Partners
EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

Mais conteúdo relacionado

Mais procurados

Distribution of ground dwelling spider genera among berseem crop at Okara dis...
Distribution of ground dwelling spider genera among berseem crop at Okara dis...Distribution of ground dwelling spider genera among berseem crop at Okara dis...
Distribution of ground dwelling spider genera among berseem crop at Okara dis...Innspub Net
 
Birds of Pambujan, Northern Samar, Philippines
Birds of Pambujan, Northern Samar, PhilippinesBirds of Pambujan, Northern Samar, Philippines
Birds of Pambujan, Northern Samar, Philippinesijtsrd
 
Water-related bird assemblages in an urban pond ‘archipelago’: Winter pattern...
Water-related bird assemblages in an urban pond ‘archipelago’: Winter pattern...Water-related bird assemblages in an urban pond ‘archipelago’: Winter pattern...
Water-related bird assemblages in an urban pond ‘archipelago’: Winter pattern...Maria Paola Di Santo
 
Population Dynamics Of Small Mammals In Virginia Forests
Population Dynamics Of Small Mammals In Virginia ForestsPopulation Dynamics Of Small Mammals In Virginia Forests
Population Dynamics Of Small Mammals In Virginia Foreststsandrew
 
seeds potentialities of medicks in sub humid area to be used in steppe zone
seeds potentialities of medicks in sub humid area to be used in steppe zoneseeds potentialities of medicks in sub humid area to be used in steppe zone
seeds potentialities of medicks in sub humid area to be used in steppe zoneIJEAB
 
Population dynamics of ground dwelling spider genera among mustard crop
Population dynamics of ground dwelling spider genera among mustard cropPopulation dynamics of ground dwelling spider genera among mustard crop
Population dynamics of ground dwelling spider genera among mustard cropInnspub Net
 
Junger and Duong Butterfly Report 2015
Junger and Duong Butterfly Report 2015Junger and Duong Butterfly Report 2015
Junger and Duong Butterfly Report 2015Gabrielle Duong
 
Insects biodiversity
Insects biodiversityInsects biodiversity
Insects biodiversityFrancis Matu
 
A comparative study of woody plant species diversity at adey amba enclosed fo...
A comparative study of woody plant species diversity at adey amba enclosed fo...A comparative study of woody plant species diversity at adey amba enclosed fo...
A comparative study of woody plant species diversity at adey amba enclosed fo...Alexander Decker
 
Distribution of macrozoobenthos in river narmada near water intake point
Distribution of macrozoobenthos in river narmada near water intake pointDistribution of macrozoobenthos in river narmada near water intake point
Distribution of macrozoobenthos in river narmada near water intake pointAlexander Decker
 
Feral Swine Project Report
Feral Swine Project ReportFeral Swine Project Report
Feral Swine Project ReportChet Huddleston
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis Defensebmaher7
 
Reptile Diversity in Mt. Matutum Protected Landscape, South Cotabato, Philipp...
Reptile Diversity in Mt. Matutum Protected Landscape, South Cotabato, Philipp...Reptile Diversity in Mt. Matutum Protected Landscape, South Cotabato, Philipp...
Reptile Diversity in Mt. Matutum Protected Landscape, South Cotabato, Philipp...Innspub Net
 
Seasonal variation of litter arthropods in some eucalyptus plantations at the...
Seasonal variation of litter arthropods in some eucalyptus plantations at the...Seasonal variation of litter arthropods in some eucalyptus plantations at the...
Seasonal variation of litter arthropods in some eucalyptus plantations at the...Alexander Decker
 
Seasonal Phenology of Reptiles in a Mediterranean Environment (“Castel di Gui...
Seasonal Phenology of Reptiles in a Mediterranean Environment (“Castel di Gui...Seasonal Phenology of Reptiles in a Mediterranean Environment (“Castel di Gui...
Seasonal Phenology of Reptiles in a Mediterranean Environment (“Castel di Gui...IJEABJ
 
Reproductive phenologies in a diverse temperate ant fauna
Reproductive phenologies in a diverse temperate ant faunaReproductive phenologies in a diverse temperate ant fauna
Reproductive phenologies in a diverse temperate ant faunaMelissa Geraghty
 

Mais procurados (20)

Distribution of ground dwelling spider genera among berseem crop at Okara dis...
Distribution of ground dwelling spider genera among berseem crop at Okara dis...Distribution of ground dwelling spider genera among berseem crop at Okara dis...
Distribution of ground dwelling spider genera among berseem crop at Okara dis...
 
Birds of Pambujan, Northern Samar, Philippines
Birds of Pambujan, Northern Samar, PhilippinesBirds of Pambujan, Northern Samar, Philippines
Birds of Pambujan, Northern Samar, Philippines
 
pre print
pre printpre print
pre print
 
Water-related bird assemblages in an urban pond ‘archipelago’: Winter pattern...
Water-related bird assemblages in an urban pond ‘archipelago’: Winter pattern...Water-related bird assemblages in an urban pond ‘archipelago’: Winter pattern...
Water-related bird assemblages in an urban pond ‘archipelago’: Winter pattern...
 
Population Dynamics Of Small Mammals In Virginia Forests
Population Dynamics Of Small Mammals In Virginia ForestsPopulation Dynamics Of Small Mammals In Virginia Forests
Population Dynamics Of Small Mammals In Virginia Forests
 
seeds potentialities of medicks in sub humid area to be used in steppe zone
seeds potentialities of medicks in sub humid area to be used in steppe zoneseeds potentialities of medicks in sub humid area to be used in steppe zone
seeds potentialities of medicks in sub humid area to be used in steppe zone
 
Silva OKRD Poster 2016
Silva OKRD Poster 2016Silva OKRD Poster 2016
Silva OKRD Poster 2016
 
Population dynamics of ground dwelling spider genera among mustard crop
Population dynamics of ground dwelling spider genera among mustard cropPopulation dynamics of ground dwelling spider genera among mustard crop
Population dynamics of ground dwelling spider genera among mustard crop
 
Junger and Duong Butterfly Report 2015
Junger and Duong Butterfly Report 2015Junger and Duong Butterfly Report 2015
Junger and Duong Butterfly Report 2015
 
Insects biodiversity
Insects biodiversityInsects biodiversity
Insects biodiversity
 
Arthropod poster
Arthropod posterArthropod poster
Arthropod poster
 
A comparative study of woody plant species diversity at adey amba enclosed fo...
A comparative study of woody plant species diversity at adey amba enclosed fo...A comparative study of woody plant species diversity at adey amba enclosed fo...
A comparative study of woody plant species diversity at adey amba enclosed fo...
 
Distribution of macrozoobenthos in river narmada near water intake point
Distribution of macrozoobenthos in river narmada near water intake pointDistribution of macrozoobenthos in river narmada near water intake point
Distribution of macrozoobenthos in river narmada near water intake point
 
Feral Swine Project Report
Feral Swine Project ReportFeral Swine Project Report
Feral Swine Project Report
 
BACT Project
BACT ProjectBACT Project
BACT Project
 
Thesis Defense
Thesis DefenseThesis Defense
Thesis Defense
 
Reptile Diversity in Mt. Matutum Protected Landscape, South Cotabato, Philipp...
Reptile Diversity in Mt. Matutum Protected Landscape, South Cotabato, Philipp...Reptile Diversity in Mt. Matutum Protected Landscape, South Cotabato, Philipp...
Reptile Diversity in Mt. Matutum Protected Landscape, South Cotabato, Philipp...
 
Seasonal variation of litter arthropods in some eucalyptus plantations at the...
Seasonal variation of litter arthropods in some eucalyptus plantations at the...Seasonal variation of litter arthropods in some eucalyptus plantations at the...
Seasonal variation of litter arthropods in some eucalyptus plantations at the...
 
Seasonal Phenology of Reptiles in a Mediterranean Environment (“Castel di Gui...
Seasonal Phenology of Reptiles in a Mediterranean Environment (“Castel di Gui...Seasonal Phenology of Reptiles in a Mediterranean Environment (“Castel di Gui...
Seasonal Phenology of Reptiles in a Mediterranean Environment (“Castel di Gui...
 
Reproductive phenologies in a diverse temperate ant fauna
Reproductive phenologies in a diverse temperate ant faunaReproductive phenologies in a diverse temperate ant fauna
Reproductive phenologies in a diverse temperate ant fauna
 

Semelhante a Seasonal changes on termite foraging behaviour under different habitats in rufiji district tanzania.

Termite (isoptera) assemblages in rufiji district tanzania
Termite (isoptera) assemblages in rufiji district tanzaniaTermite (isoptera) assemblages in rufiji district tanzania
Termite (isoptera) assemblages in rufiji district tanzaniaAlexander Decker
 
Forestry effects on stream invertebrate communities
Forestry effects on stream invertebrate communitiesForestry effects on stream invertebrate communities
Forestry effects on stream invertebrate communitiesRodolfo Santos
 
Horsley et al_Acta Chiro_2015
Horsley et al_Acta Chiro_2015Horsley et al_Acta Chiro_2015
Horsley et al_Acta Chiro_2015Tom Horsley
 
Mangrove ecology and species distribution along the Gorai Creek of Mumbai coa...
Mangrove ecology and species distribution along the Gorai Creek of Mumbai coa...Mangrove ecology and species distribution along the Gorai Creek of Mumbai coa...
Mangrove ecology and species distribution along the Gorai Creek of Mumbai coa...AI Publications
 
Seasonal Activity of Dung Beetles (Scarabaeinae) in a Forest in South Western...
Seasonal Activity of Dung Beetles (Scarabaeinae) in a Forest in South Western...Seasonal Activity of Dung Beetles (Scarabaeinae) in a Forest in South Western...
Seasonal Activity of Dung Beetles (Scarabaeinae) in a Forest in South Western...AI Publications
 
Termite Mounds’ Diversity and Distribution: A Study at Jnanabharathi, Bangalo...
Termite Mounds’ Diversity and Distribution: A Study at Jnanabharathi, Bangalo...Termite Mounds’ Diversity and Distribution: A Study at Jnanabharathi, Bangalo...
Termite Mounds’ Diversity and Distribution: A Study at Jnanabharathi, Bangalo...AI Publications
 
Identification of Pteridophyte Species in Mt. Capistrano
Identification of Pteridophyte Species in Mt. CapistranoIdentification of Pteridophyte Species in Mt. Capistrano
Identification of Pteridophyte Species in Mt. CapistranoKhemgerald Albacite
 
MASTER THESIS, Munoz, Ref 20140536
MASTER THESIS, Munoz, Ref 20140536MASTER THESIS, Munoz, Ref 20140536
MASTER THESIS, Munoz, Ref 20140536Josefine Mu
 
THE EFFECTS OF CLEARCUT SIZE ON THE BIRD COMMUNITY IN THE SECOND COLLEGE GRANT
THE EFFECTS OF CLEARCUT SIZE ON THE BIRD COMMUNITY IN THE SECOND COLLEGE GRANTTHE EFFECTS OF CLEARCUT SIZE ON THE BIRD COMMUNITY IN THE SECOND COLLEGE GRANT
THE EFFECTS OF CLEARCUT SIZE ON THE BIRD COMMUNITY IN THE SECOND COLLEGE GRANTjoshmooney
 
2. Butterfly Diversity.Pdf
2. Butterfly Diversity.Pdf2. Butterfly Diversity.Pdf
2. Butterfly Diversity.PdfAngie Miller
 
The effect of flooded mine subsidence on thrips and forest biodiversity in th...
The effect of flooded mine subsidence on thrips and forest biodiversity in th...The effect of flooded mine subsidence on thrips and forest biodiversity in th...
The effect of flooded mine subsidence on thrips and forest biodiversity in th...EdytaSierka
 
Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...
Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...
Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...Agriculture Journal IJOEAR
 
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...AI Publications
 
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...AI Publications
 
Biodiversity and conservation
Biodiversity and conservationBiodiversity and conservation
Biodiversity and conservationPoojaVishnoi7
 
Plant Diversity & its scope.pptx
Plant Diversity & its scope.pptxPlant Diversity & its scope.pptx
Plant Diversity & its scope.pptxApekshaKurane
 
Ingoldian Fungi in Kigga Falls, Chikmagalur District, Karnataka
Ingoldian Fungi in Kigga Falls, Chikmagalur District, KarnatakaIngoldian Fungi in Kigga Falls, Chikmagalur District, Karnataka
Ingoldian Fungi in Kigga Falls, Chikmagalur District, KarnatakaIOSR Journals
 

Semelhante a Seasonal changes on termite foraging behaviour under different habitats in rufiji district tanzania. (20)

Termite (isoptera) assemblages in rufiji district tanzania
Termite (isoptera) assemblages in rufiji district tanzaniaTermite (isoptera) assemblages in rufiji district tanzania
Termite (isoptera) assemblages in rufiji district tanzania
 
Forestry effects on stream invertebrate communities
Forestry effects on stream invertebrate communitiesForestry effects on stream invertebrate communities
Forestry effects on stream invertebrate communities
 
Sp.2
Sp.2Sp.2
Sp.2
 
Horsley et al_Acta Chiro_2015
Horsley et al_Acta Chiro_2015Horsley et al_Acta Chiro_2015
Horsley et al_Acta Chiro_2015
 
Mangrove ecology and species distribution along the Gorai Creek of Mumbai coa...
Mangrove ecology and species distribution along the Gorai Creek of Mumbai coa...Mangrove ecology and species distribution along the Gorai Creek of Mumbai coa...
Mangrove ecology and species distribution along the Gorai Creek of Mumbai coa...
 
Seasonal Activity of Dung Beetles (Scarabaeinae) in a Forest in South Western...
Seasonal Activity of Dung Beetles (Scarabaeinae) in a Forest in South Western...Seasonal Activity of Dung Beetles (Scarabaeinae) in a Forest in South Western...
Seasonal Activity of Dung Beetles (Scarabaeinae) in a Forest in South Western...
 
Termite Mounds’ Diversity and Distribution: A Study at Jnanabharathi, Bangalo...
Termite Mounds’ Diversity and Distribution: A Study at Jnanabharathi, Bangalo...Termite Mounds’ Diversity and Distribution: A Study at Jnanabharathi, Bangalo...
Termite Mounds’ Diversity and Distribution: A Study at Jnanabharathi, Bangalo...
 
Identification of Pteridophyte Species in Mt. Capistrano
Identification of Pteridophyte Species in Mt. CapistranoIdentification of Pteridophyte Species in Mt. Capistrano
Identification of Pteridophyte Species in Mt. Capistrano
 
MASTER THESIS, Munoz, Ref 20140536
MASTER THESIS, Munoz, Ref 20140536MASTER THESIS, Munoz, Ref 20140536
MASTER THESIS, Munoz, Ref 20140536
 
THE EFFECTS OF CLEARCUT SIZE ON THE BIRD COMMUNITY IN THE SECOND COLLEGE GRANT
THE EFFECTS OF CLEARCUT SIZE ON THE BIRD COMMUNITY IN THE SECOND COLLEGE GRANTTHE EFFECTS OF CLEARCUT SIZE ON THE BIRD COMMUNITY IN THE SECOND COLLEGE GRANT
THE EFFECTS OF CLEARCUT SIZE ON THE BIRD COMMUNITY IN THE SECOND COLLEGE GRANT
 
2. Butterfly Diversity.Pdf
2. Butterfly Diversity.Pdf2. Butterfly Diversity.Pdf
2. Butterfly Diversity.Pdf
 
The effect of flooded mine subsidence on thrips and forest biodiversity in th...
The effect of flooded mine subsidence on thrips and forest biodiversity in th...The effect of flooded mine subsidence on thrips and forest biodiversity in th...
The effect of flooded mine subsidence on thrips and forest biodiversity in th...
 
Farrington Final Draft
Farrington Final DraftFarrington Final Draft
Farrington Final Draft
 
Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...
Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...
Analyses of Community Attributes of Meiofauna Under A Pollution Regime in the...
 
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
 
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
Status of Bushbuck (Tragelaphus scriptus) and Buffalo (Syncerus caffer) in th...
 
Biodiversity and conservation
Biodiversity and conservationBiodiversity and conservation
Biodiversity and conservation
 
Plant Diversity & its scope.pptx
Plant Diversity & its scope.pptxPlant Diversity & its scope.pptx
Plant Diversity & its scope.pptx
 
Ingoldian Fungi in Kigga Falls, Chikmagalur District, Karnataka
Ingoldian Fungi in Kigga Falls, Chikmagalur District, KarnatakaIngoldian Fungi in Kigga Falls, Chikmagalur District, Karnataka
Ingoldian Fungi in Kigga Falls, Chikmagalur District, Karnataka
 
Biodiversity and conservation
Biodiversity and conservationBiodiversity and conservation
Biodiversity and conservation
 

Mais de Alexander Decker

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inAlexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesAlexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksAlexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dAlexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceAlexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifhamAlexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaAlexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenAlexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksAlexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabAlexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalAlexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesAlexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbAlexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloudAlexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveragedAlexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenyaAlexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health ofAlexander Decker
 

Mais de Alexander Decker (20)

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
 

Último

Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Scott Andery
 
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...panagenda
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 

Último (20)

Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
 
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 

Seasonal changes on termite foraging behaviour under different habitats in rufiji district tanzania.

  • 1. Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.11, 2013 6 Seasonal Changes on Termite Foraging Behaviour under Different Habitats in Rufiji District Tanzania. Christopher Materu1* & Jacob Yarro,2 Bruno Nyundo,2 1. Christopher L. Materu, P O Box 6226, Mikocheni Agricultural Research Institute Tanzania 2. Bruno A. Nyundo & Jacob G. Yarro P O Box 35064, University of Dar Es Salaam *chrismateru@yahoo.com, bnyundo@uccmail.co.tz and jgyarro@uccmail.co.tz Abstract The effect of wet and dry season on termites foraging was examined in cropland, forest and grassland in Rufiji district for a period of one year. Termites species richness as well as abundance were sampled using standardized transect lines. Sampling was carried out on monthly basis. Termite species abundance was significantly different between the three locations, but species richness was not significantly different. These results reveal that termite abundance was higher in disturbed habitat due to the removal of vegetation which denies termites food and areas for nesting. Furthermore movement of termites from lower horizons during the wet season was higher than in the dry season. Key words: Termites activity, abundance, species richness, Rufiji district. 1. Introduction The effect of seasonal changes on termites foraging in different habitats in Rufiji district is poorly studied despite the influence of termites on decomposition of organic matter and nutrient cycling (Park et al. 1996). For example, studies carried out in Malaysia observed that termites are more abundant in the forest and grassland sites during the wet season than during the dry season (Lee & Wood 1971). Studies related to effects of humans on tropical rainforest biodiversity have shown that species richness declines due to human activities (Lawton et al. 1998). Seasonal weather variation in tropical forest areas have been reported by Eggleton & Bignell, (1995). The direct effect of rainfall arises from the physical effects of large amounts of water falling on litter fauna and forest floor litter (Chiba et al. 1975). Termites are regarded as decomposers of wood in tropical forests, (Wood & Sands 1978); and in savannah (Holt, 1987). These functions are dependent on the species assemblage, structure of the termite community (Lawton et al. 1996). Reduced ground cover vegetation results in increased colony establishment of some African Macrotermitinae. Termites form a component of the ecosystem and hence their foraging activity is seasonal for most termite species. Seasonal food availability influences termite foraging activity hence a higher foraging activity in the wet season than in the dry season. Termites foraging is mainly for food searching during the wet season and highly reduced during dry season. Therefore exposure of termites on the soil surface during dry season may lead to desiccation (Creffield, 1991). The common food storage is faeces and fungal comb in Microtermitinae sub-family or as carton in other species. The studied sub-terranean termite species forage and store food that will be consumed the following season. On opening the termites nest you will find out that termites are divided into groups known as castes ie reproductives, workers and soldiers (Creffield, 1991). The role of reproductives is to lay more eggs for the expansion of the colony members, while workers play a role of food searching, nest repair, construction and feeding of the young ones while soldiers characterised with big mandibles responsible for defending the colony members from natural enemies. Currently no comprehensive studies on termite foraging behaviour depending on seasonal changes have been conducted. This study was carried out in three different habitats i.e. grassland, cropland and in a primary forest from October, 2010 to November 2011 in Rufiji district. 2. Materials and Methods The study on termite species richness and abundance was carried out using standardized transect lines (Eggleton, 1996). The transect lines were able to provide quick information on different termite species present in the selected habitats. The district is located 178 km south of Dar es Salaam and covers an area of about 53,000 ha. The prominent feature of the district is the Rufiji River, an eponym for the district. The study area lies between 7o 27´S - 8 o 27´S and 37o 52´E - 39o 28´ E. The district has a bimodal rainfall pattern, the long rains are between March and June and the short between October and December. The district receives an average rainfall of about 1,100 mm/year Temperatures range from 25o C to 35o C and are highly influenced by monsoon winds, which bring rains. The distribution of forest in the district greatly influences the rainfall patterns. There is no weather station at each selected site but the rainfall data was obtained from the Tanzania Meteorological Weather Agency. The key selection criteria of the study sites were size and habitat complexity. Large areas were expected to have more species than small areas and the greater the habitat complexity the higher the diversity. Therefore, different habitat types including grassland, forested land and coconut farms of different ages were selected for termite
  • 2. Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.11, 2013 7 sampling. All selected habitat types were below 500m above sea level. Study locations were randomly selected to cover various habitats in the district. Standard transect line 200 m with 5 m wide were used during data collection (Eggleton et al. 1996). Termite abundance and richness were regarded as data, and these were used to compare variation among or between habitats (Whittaker, 1972). Termite sampling was carried out when termite activity was high between 0730 to 1200 noon and 1600 when temperatures were also cool. Insect sampling was carried for a period of one year on monthly basis. Sampling during rainfall was carried out after three days to avoid the effect of rain on termite foraging activity. Termite samples from each quadrat were collected and preserved in labelled vials containing 70% ethanol for later identification. 3. Data Analysis The species diversity (abundance and species richness) in different sites was calculated by using the Shannon Weaver Index (H′) (Zar, 1999). The Shannon-Weaver Index takes into account the number of species in the community (species richness) and the number of individuals per species. The index H′ is calculated as follows: H′ = -Σ pi ln pi, where pi = proportion of total sample belonging to the ith species. Species diversity has two main important components namely species richness and equitability. Species equitability is related to dominance relationship. The Species evenness or equitability was calculated by E = H′/lnS or E = H′/H′max (Zar, 1999). Where: • E is evenness or equitability of species • H′ is the observed species diversity • The diversity of species in various habitats between seasons and between habitat types was compared by Mann-Whitney test (Zar, 1999). Analysis of variance among the habitat types was computed using Kruskal-Wallis test. The U–test was used to compare termite abundance between habitat types. Chi- square test was used to compare species richness sampled from the selected study areas. • 3.1 Taxonomy Termites species collected were examined under dissecting microscope using identification keys (Bouilon, & Mathot, 1965; Pearce et al. 1992). Termite soldiers were used to identify termite species and estimate their relative abundance. Termites without soldiers were excluded from the analysis. 4. Results 4.1 The termite abundance in the study habitats during wet and dry season During the entire period of this study a total of 26,149 termites were recorded with their respective mean averages i.e. termites from the cropland, grassland and forest habitats, respectively (Table 1). Comparison of termites abundance was done using the Kruskal-Wallis test which showed statistically significant differences in abundance (P = 0.0427) (Table 2). 4.2 Comparison of termite abundance between pairs of habitat types Termite abundance between cropland and forest habitats was significantly different (U = 55.500 and 162.500, p = 0.0353). Comparison of cropland and grassland habitats also showed significant differences in termite abundance (U = 36.000 and 55.000, p = 0.031). However, there was no significant difference in termite abundance between the forest and the grassland habitats (Table 2). Species diversity as well as evenness during wet and dry season was summarised in Table 3 and Table 4. 4.3 Species richness The highest number of species was recorded from the forest habitat (16), followed by cropland (13) and the least was grassland (7) (Table 3). However there was no significant difference in species richness (χ2 = 1.68, p > 0.05). Overall, termite species richness was higher during the wet season than during dry season. During the study period termite species richness was higher in the forest habitat than cropland as well as in grassland habitat Table 3 provides an overview of species richness in different habitats during wet and dry season. Termite species richness was 19%, 36% and 44% for grassland, cropland and forest habitats respectively. The species richness was lowest in the grassland possibly because of human activities. In the cropland, for example, the most important genera were the Microtermes alluaudanus Microcerotermes brachygnathus and Macrotermes bellicosus which were feeding on dead cassava plants, maize straws left in the field from previous harvest, dead tree stumps and dead tree logs. Pseudacanthotermes militaris Nasutitermes kempae) and Odontotermes sp was found at much lower densities and were feeding on dead tree stumps and dead tree logs. Fastigitermes jucundus Cubitermes glebae and Termers bolivianus were feeding on damp decomposing wood material and soil. It was found that soil and wood feeding termite species were equally represented in all habitat types. 4.4 The termite abundance in the study habitats during wet and dry season Termite individuals were more abundant during wet season than during the dry season. The increase in numbers
  • 3. Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.11, 2013 8 ranged from about 4,000 in grassland to 16,000 individuals from cropland. Forest and grassland habitat had fewer termites numbers than crop land habitats. Termite abundance in coconut farms and nurseries was high during the wet season compared to the dry season. The cropland habitats were planted with annual and perennial crops i.e cassava, maize, pineapples and young coconut seedlings. Intercropping of coconut trees with citrus was practiced by farmers in all crop land habitats. There was high termite abundance in cropland habitat and low species richness. Cropland and grassland habitats had low species richness too. In the grassland habitat Cubitermes sp were recorded during both seasons. More soil feeding termite genera were thus encountered during the wet season than during dry season in all the habitat types although the seasonal differences were not significantly different. Microtermes sp. was recorded during entire period of this study in all the habitat types. Furthermore, Pseudacanthotermes sp. was recorded in all habitats during both seasons except in the grassland habitats. Fungus growing termite species were more tolerant to drought and their nests were also located at positions deep enough down the soil out of reach of farm operation activities. In some areas where colonies were disturbed by farm operations like frequent cultivation. Apart from this, there were dead stumps and roots in the cropland which provided plenty of food for fungus growing termites all the year around. 5. Discussions 5.1 The termite abundance in the study habitats during wet and dry season Alterations in the environment from forest habitat to grassland or agriculture activities have an influence on food availability, presence/absence of natural enemies and nesting habit (Holloway et al. 1992). The increase in termites numbers was not uniform from one habitat to another, the numbers were probably influenced by the abundance of food. Most of the food in the forest consists of leaf litter, wood, woody stumps and decaying wood material which change very little. Un-weeded cultivated cropland resembles the forest habitat in terms of food availability. Thus in an ecologically stable ecosystem where food availability is more or less stable, fluctuations in termite abundance are minimal. Termite abundance in coconut farms and nurseries was highly influenced by the weather and various field operations in the farms including nursery husbandry practices. Forest clearing, burning, tillage operation, weed management and the type of crop grown may strongly impact on termite abundance as well as on species richness in Rufiji district. Similar results were reported by Abe & Watanabe (1983), on soil macro fauna in subtropical rain forest and its adjacent cassava plantation in Okinawa- with special reference to the activity of termites. Similar studies carried out in Southern Cameroon showed that there was an increase of termite abundance in relation to forest disturbance although species richness collapsed along with land use (Pinheiro et al. 2002; Abensperg-Traun & Smith 1999). Intercropping maximizes land use but from the point of view of termites it increases biomass through accumulation of crop residues and dead trees providing abundant sources of food for different termite species. Crop diversity influences termite richness and abundance under different land use system. Studies carried out in the Mbalmayo Forest Reserve, southern Cameroon have shown that the diversity, abundance and biomass of termites differ under different levels of anthropogenic disturbance (Eggleton et al. 1996). These findings are in agreement with results reported from the effects of habitat fragmentation on Amazonian termite communities (De Souza & Brown 1994) and Mabira forest in Uganda (Okwakol, 2000). It has also been reported in Indonesia where species richness was negatively correlated with the removal of canopy cover (Jones & Eggleton 2000). Conversion of forest areas to agriculture results in habitat loss and severe changes in water holding capacities (Black et al. 1997), thereby putting soil organism at risk. Termite activity is also influenced by changes in the organic matter and its quality (Wood et al. 1977). Loss of habitat can also be brought about by setting fires which remove leaf litter materials thus destroying suitable condition for soil inhabiting organisms including soil feeding termites. Indeed presence of leaf litter in grassland, forest or in cropland area is important because leaf litter acts as mulch and retains soil moisture or source of organic matter, creating a favourable environment for termites. Similarly, the effect of free range grazing and overgrazing in grassland habitats leads to reduction in the number of species in the habitat during both seasons. Wood (1975), reported that decline of termite species richness in grassland habitats and croplands is due to various human activities. 5.2 Termite species richness With regard to the cropland, the areas under cultivation might have been part of a more extensive forest whose canopy was cleared to give way to agriculture which negatively changed the physical and biological complexity of the area resulting in reduced species richness. High temperatures in cropland habitats raise the soil temperature, making sub-terannean termite species to move deeper into the soil, influencing termite foraging activities as well as the number of species observed on the soil surface at the time of sampling. Kumar (1991), observed that termite foraging activity varies seasonally with weather conditions. Drought is one of the major factors influencing termite foraging because soil moisture is related to termite foraging such that high temperatures on the soil surface and low soil moisture content, will cause a raise in soil
  • 4. Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.11, 2013 9 temperature causing termites to shift from the surface area to deeper soil horizons. There were no significantly differences between the seasons in terms of species richness. Studies carried out in northern California showed that there was seasonal foraging behaviour of Reticulitermes sp. (Rhinotermitidae) (Haverty et al. 1974). 5.3 Termite species diversity and evenness Species diversity and evenness, a measure of proportional diversity, was determined by employing the Shannon Weaver as a test statistic for a model that is neutral with respect to physical, functional, and biotic interactions. The results from this study indicated that the habitat with high diversity figures also had the highest termite richness as well as evenness. The intercropping system practiced in the cropland habitat studied, could have been mimicking the forest habitat because the species evenness in the two habitats were not significantly different. The termite species were evenly distributed in all habitats, this is probably because the habitats were not located far away from each other. 6. Conclusion The present study was carried out in grassland, forest and cropland habitats whereby the forest habitat had the highest termite species richness. Due to higher biomass productivity in the forest areas many termite species were able to share available food resources when compared to the grassland and cropland habitats leading to higher species richness, diversity and evenness. Termites abundance was observed to be high in the cropland habitat probably alteration of the natural forest reduce competition for ecological resources. The results of this work will assist researchers to plan well on termite sampling when taking into consideration of seasonal effect on termite species richness, abundance and diversity. Further studies are needed to cover more diverse agro- ecological regions to identify termite species richness and diversity and how they interact with the environment. Acknowledgements The authors would like to thank Ministry of Agriculture and Food Security for financial support for this study. Many thanks are also extended to the District Administrative Council for their courage to allow this study to be carried out in their district. Many thanks to Mr. Pius Quangwa, Erick Jorime, and Mr. Sallum Mussa for assisting during site selection, experiment set up, termite sampling and sorting. Many thanks to Dr. Linus Masumbuko for his advice and reviewing this work and Mr. Suya from the University of Dar es salaam for identification of termite species. References Abe, T. & Watanabe, H. (1983), Soil Macro fauna in Subtropical rain forest and its adjacent cassava plantation in Okinawa- with special reference to the activity of termites. Physiology of Ecology Japan 20:101-114. Abensperg-Traum, M & Smith , G. T. (1999), How small is too small for small animals? Four terrestrial arthropod species in different-size remnant woodlands in agricultural wetern Australia-Biodivesity. Conservation 8:709-726. Bouilon, A. & G. Mathot, (1965), Identification keys for termites occurring in East Africa. Black, H. I. J. & Okwakol, M. J. N. (1997), Agricultural Intensification, soil biodiversity and agro ecosystem function in the tropics: the role of decomposer biota. Applied Soil Biology 6: 37-53. Creffield, J.W. (1991), Wood-destroying insects, wood borers, and termites. Collingwood VIC, Australia: CSIRO Publishing. Chiba S, Abe, T., Aoki J., Imadate G, Ishikawa, K., Kondoh M., Shiba, M. & Watanabe, H. (1975), Studies on the productivity of soil animals in Pasoh Forest Reserve, West Malaysia, Hirosaki University Science Reports 22: 87-124. De Souza, O. F. F. & Brown., V. K. (1994), Effects of habitat fragmentation on Amazonian termite communities. Journal of Tropical Ecology 10(2): 197-206. Eaggleton, P. & Bignell, D. E. (1995), Monitoring the response of tropical insects to changes in the environments: troubles with termites. In: Harrington, R. and Stork, N. E (eds) Insects in a Changing Environment. Academic Press, London, UK, PP. 473-497. Eggleton, P., Bignell, D. E., Sands, W. A., Mawdsley, N. A., Lawton, J. H., Wood, T. G. & Bignell, N. C. (1996), The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve southern Cameroon Philosophical Transactions of the Royal Society of London, Series B 35: 561-68. Haverty, M. I.; Lafage, J. & Nutting, W. L. (1974), Seasonal activity and environmental control of foraging of the subterranean termites Heterotermes aureus (Synder) in desert grassland. Life Science 15:1091-1101. Holloway, J. D. A; A. H. Kirk Sprigs, & Chey V. K. (1992), The response of rainforest insect groups to logging and conversion to plantation. Philosophical Transactions of the Royal Society 335, 425-436. Holt, J. A. (1987), Carbon mineralization in semi arid northern eastern Australia. The role of termites. Journal of Tropical Ecology 3: 255-263.
  • 5. Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.11, 2013 10 Jones, D. T. & Eggleton, P. (2000), Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Journal of Applied Ecology 37:191-203. Kumar, N. G. (1991), Studies on the ecology of the subterranean Odontotermes horni (Wasmann) (Isoptera: Termitidae) and its foraging effects on the soil nutrient status. PhD Thesis, University of Agricultural Sciences, Bangalore. 254pp. Lawton, J., H. Bignell, D. E., Blomers, G. F., Eggleton, P & Honda, M. E. (1996), Carbon flux and diversity of nematodes and termites in Cameroon forest soils. Biodiversity Conservation 5: 261-273. Lawton, J. H., Bignell, D. E., Bolton, B., Bloemers, G.F., Eggleton P., Hammond, P.M., Hodda, M, Holt, R. D., Larsen., T. B., Mawdsley, N. A., Stork NE., Srivastava, D. S. & Watt, A. D. (1998), “Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest”, Nature, 391(6662): 72-76 Lee, K. E. & Wood, T. G. (1971), Termites and soils. Academic press. PP. 252 New York and London: Academic Press. Okwakol, M. J. N. (2000), Changes in termite (Isoptera) communities due to the clearance and cultivation of topical forest in Uganda. African Journal of Ecology 38, 1-7 Park, H.C., Orsini, J.P.G., Majer, J.D. & Hobbs, R. J. (1996), A model of litter harvesting by the Western Australian wheat belt termite, Drepanotermes tamminensis (Hill), with particular reference to nutrient dynamics. Ecological Research 11 (1): 69-78. Pearce, M.J., Bacchus, S. & Logan, J.W.M. (1992), What Termite?: A Guide to Identification of Termite Pest Genera in Africa. Natural Resources Institute, UK. Pinheiro, F., I. R., Diniz., Coelho, D. & Bandeira M. P. S. (2002), Seasonal patterns of insect abundance in the Brazilian cerrado. Journal of Australian Ecology. 27:132–136. Wood, T. G. & Sands, W. A. (1978), The role of termites in ecosystems. Pp. 245-292 in Brian, M. V. (ed.) Production ecology of ants and termites. Cambridge University Press, Cambridge. Wood, T. G. (1975), The effects of clearing and grazing on the termite fauna (Isoptera) of tropical savannas and woodlands. In: Progress in soil zoology , procs5th Int.Coll.on, soil Zoology. (Ed.G. Vanek).pp. 409-413. Academic. Prague. Wood, T. G., Johnson, R. A. & Ohiagu, C. E. (1977), Populations of termites (Isoptera) in natural and agricultural ecosystem in a southern Guinea savannah near Mokwa, Nigeria. Geo-Eco Tropical 1(2): 139-148. Zar, J. H. (1999), Biostatistical analysis 4th Ed. Prentice-Hall, Inc. Englewood cliffs, New Jersey, USA.
  • 6. Journal of Biology, Agriculture and Healthcare www.iiste.org ISSN 2224-3208 (Paper) ISSN 2225-093X (Online) Vol.3, No.11, 2013 11 Table 1: Termites abundance (total number of individuals) in the three habitat types (n = number of quadrates) during wet and dry season Habitat type Termites abundance wet season (mean) Termites abundance dry season (mean) Cropland (n=160) 16,820 ± 105 5,307 ±.33.1 Forest (n=40) 4,622 ± 115.5 1,308 ± 32.7 Grassland (n=40) 4,707 ±117.7 694 ± 17.35 Table 2: Comparison of termite abundance between habitat types (cropland, grassland and forest) in Rufiji district Habitat pairs U-Statistic U’ P Significance Crop vs forest 55.500 162.500 0.0353 * Crop vs grass 36.000 55.000 0.031 * Forest vs grass 36.000 76.000 0.1977 ns Table 3: Pair wise comparison of species diversity (H′) during wet and dry season Habitat Species richness Wet season species diversity (H′) Dry season species diversity (H′) Cropland 13 2.0485 1.7432 Forest 16 2.2836 1.8724 Grassland 7 1.4854 1.2669 The pair wise comparison showed that there was no significant difference between the seasons (U= 10.500 and U’ = 25.500, P>0.05). Table 4: Species evenness during wet and dry season Habitat Species richness Wet season Species Evenness (J) Dry season Species Evenness (J) Cropland 9 0.73885 0.62872 Forest 9 0.82362 0.67534 Grassland 5 0.53573 0.0458
  • 7. This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing. More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org CALL FOR JOURNAL PAPERS The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors. MORE RESOURCES Book publication information: http://www.iiste.org/book/ Recent conferences: http://www.iiste.org/conference/ IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar