SlideShare uma empresa Scribd logo
1 de 14
Baixar para ler offline
Journal of Education and Practice                                                                            www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012


                  A Scenario-Based Learning of Electrical Circuits
                                                Alexandros Papadimitriou
                     School Teacher Advisor of the Greek Ministry of Education, Athens, Greece
                                                     apapadim@sch.gr


Abstract
This paper presents a framework of an educational scenario for the teaching of electrical circuits at senior high schools.
This scenario aims at the development of exploratory and critical thinking of students, the development of
make-decision skills and knowledge transfer skills from one framework to another, the ability of collaboration and in
common approach of problem solving. During the lessons, the student teams discover the formulas and principles of
the total resistance, the voltage drop across the resistances, and the flowing current through the resistances, in series,
in parallel, and in combination resistance circuits by comparing the circuits with each other and guided by the
exploratory questions and scaffolding as well. At the end, the student teams solve an open-ended problem based upon
their knowledge obtained through the activities. This framework has adopted and applied by educators with a great
success.
Keywords: Educational scenario, Problem solving, Social constructivism, Cooperative learning.


1. Introduction
The aim if this paper is to present an innovative scenario framework for the learning of electrical circuits by senior high
school students or technical high school students.
Numbers of studies on the learning of electrical circuits indicate that students still have many difficulties and
misunderstandings after systematic instruction (McDermott & Shaffer, 1992; Duit & von Rhöneck, 1998). Most
typical difficulties are inabilities to relate theoretical models of electricity to real circuits, incomplete understanding of
basic concepts of electricity, and incapacity to reason about the behaviour of electrics (McDermott & Shaffer, 1992;
Duit & von Rhöneck, 1998). These difficulties and misconceptions seem to be very resistant to change (Chi, 2008).
There have been several attempts to overcome the difficulties in electricity learning. Traditional electricity teaching
using textual learning material, concrete application tasks or hands-on laboratory work has been quite ineffective.
After series of instruction learners have been still found to hold many misconceptions about electricity. The use of
application questions and tasks has reported to be partially useful for developing understanding of electricity concepts
(Wang & Andre, 1991). Research also indicates that laboratory-based hands-on activities can offer special benefits for
understanding of concepts and correcting misconceptions (McDermott & Shaffer, 1992). However, some of the
misconceptions are so strong and resistant that even direct experience with the real phenomena may not always be
effective for changing students opinions (Ronen & Eliahu, 2000). There have also been attempts to replace hands-on
laboratory work with electricity simulations. Results of these studies provide rather inconsistent picture about the
effectiveness of simulations compared to laboratory exercises. Some studies speak in favour of simulations (Ronen &
Eliahu, 2000). Inquiry-based simulations may provide one solution (Hung & Chen, 2002). Students are required to
resolve their cognitive conflict through visualization of physical phenomena via dynamic computer simulation and
peer support in cooperative learning groups (Abdullah and Shariff, 2008).
DiSessa (2001) suggests that Physics is best taught through experiments, labs, demonstrations and visualizations which
help the learners understand physical phenomena conceptually. According to Concari et al (2006), Physics being an
experimental science, observation, measuring and theoretical speculations are processes that cannot be separated from
the physical knowledge construction, even in the classroom. According to Snowman et al (2008), educators should
consider stimulating the basic purposes of schooling curiosity, exploration, problem solving, and communication.
Physics instructors generally believe that the problem-solving leads to the understanding of physics and that it is a
reliable way to demonstrate the understanding for purposes of evaluation (Maloney, 1994). Also, physics education
researchers have developed a number of strategies that have been shown to be effective in improving student problem
                                                             27
Journal of Education and Practice                                                                         www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

solving performance, such as when students work with other students, or with a computer, where they must externalize
and explain their thinking while they solve a problem (Reif & Scott, 1999).
The problem-solving scenarios follow a socio-constructivist approach and promote the inductive and deductive way of
learning, as students are encouraged to discover, test structures and apply the knowledge obtained to new situations.
Generally, the scenarios promote and support problem-based learning, where students can be creative, learn how to
combine knowledge from different thematic areas, can think critically, analytically, and learn how to solve real
problems. While solving the problems, they are carefully guided to learn the associated concepts and procedures. Also,
the scenarios would require students to reflect upon the whole resource by predicting, hypothesising, and
experimenting to produce a solution and it also provides for coaching at critical times, and scaffolding of support,
where the teacher provides the skills, strategies and links that the students are unable to complete the task (Carroll,
1999).
Scaffolding is a process in which students are given support until they can apply new skills and strategies
independently and it has been found to be an excellent method of developing students’ higher level thinking skills
(Rosenshine & Meister, 1992). Vygotsky's (1978) theories of scaffolding knowledge through peer discussion and
interaction has been applied systematically under the rubric of cooperative learning. Cooperative learning is an
instructional technique in which students work together in structured small teams in order to accomplish shared goals
(Johnson & Johnson, 1989). In cooperative team problem solving (Heller & Hollabaugh, 1992): (a) the students have a
chance to practice the strategy until it becomes more practical; (b) complex problems can be solved easier by teams
rather than individuals; (c) students get practice developing and using the language of physics; (d) in their discussion
with each other, students must deal with and resolve their misconceptions; (e) at the brainstorming of the problems,
students are less intimidated because they are not answering as an individual, but as a team. Additionally, the
cooperative team problem solving positively affects on the attitude scores of students and on physics achievements
and achievement motivation of students (Gök, 2010). Johnson & Johnson (1989), suggest that with the help of
sufficient scaffolding, or dynamic team support in cooperative environments, provided by inquiry-based computer
simulations, an instructor, a more skilled partner, or a more capable peer, will enable concrete operational students to
enhance their reasoning skills toward formal thought.
Activities supported by the proper scaffolding can help students develop expertise across all four domains of learning,
as follows (Lombardi, 2007): (a) cognitive capacity to think, solve problems, and create; (b) affective capacity to value,
appreciate, and care; (c) psychomotor capacity to move, perceive, and apply physical skills; and (d) conative capacity
to act, decide, and commit.
This paper aims to provide a scenario framework by using inquiry-based simulations, explorations, guided discovery
and communication for helping students to better understand electricity and acquire correct scientific model about
electrical circuits. Through a process of inquiry, the empirical evidence is transformed (e.g., natural phenomena) into
revised and new knowledge structures (Lee, 1999). Explorations promote a new state of understanding or equilibrium
or self-regulation when new concepts and principles are derived from the exploration experience where students
collect and analyze data via computer simulation in cooperative learning team (Abdullah and Shariff, 2008). Creating a
scenario is not a simple task. In order for it to be authentic, we must try to make the scenario as realistic as possible.
Elements of a scenario include the role the students will play at each stage of scenario, the tools they will use, and the
sequence of activities in which they will be engaged. For the sake of their joint activities, students need to articulate
their opinions, predictions and interpretations. Conflict sometimes arises in peer collaboration when students disagree
with each other in their interpretations or approaches to the task. When solving a problem, students co-construct shared
knowledge and understanding by complementing and building on each other’s ideas (Tao & Gunstone, 1999).
The remainder of this article is structured as follows. In the Section 2 the principles of team formation in the scenario
are described. In the Section 3 the scenario framework is described, and in the Section 4 a conclusion for the present
work is presented.


2. Team Formation in the Scenario
In order to have effective teams we should take into account team policies and expectations. Effective teams are
characterized by mutual trust and respect, acceptance, understanding, courtesy, ability, willingness, effective
                                                           28
Journal of Education and Practice                                                                       www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

collaboration, and the low number of members who must possess specific knowledge, skills, shared beliefs and
attitudes (Oakley et al., 2004; Baker et al., 2006). Research shows that students working in small teams tend to learn
more of what is taught, retain it longer than when the same content is presented in other instructional formats, and
appear more satisfied with their classes (Barkley et al., 2005).
Taking into account the Oakley et al. (2004) suggestion, I adopt that the teams should be formed with three
(recommended) or four students who have the top, average, lower and/or lowest scores. For three person teams, the
specific roles should be assigned as follows: Coordinator, Recorder, and Discusser. For four person teams, the specific
roles should be assigned as follows: Coordinator, Recorder, Discusser, and Energizer. The responsibilities for each role
are defined below.
• Coordinator: directs the sequence of steps (e.g., we need to move on to the next step), manages time (e.g., let us
  come back to this later if we have time), reinforces merits of everyone’s ideas, ensures that each team member
  participates, keeps team focused on task, summarizes (if there is no Energizer in the team) the team's discussion
  and conclusions (e.g., so here is what we have decided) or how the solution was attained.
• Recorder: writes down actual steps, makes sure everyone understands both the solution and the strategy used to get
  it, checks for understanding of all team members (e.g., George, explain me this diagram) or for the final solution
  for accuracy and turns it in by the due date and time, makes sure all team members agree on each step of the
  problem solution or on plans and actions (e.g., are we in agreement on this?), submits reports for the team.
• Discusser: makes sure all possibilities (e.g., possible problem-solving strategies or plans and actions) are explored
  (e.g., what other possibilities are there?), suggests alternative approaches or concerns with suggested solutions
  (e.g., let us try to look at this another way), provides reasoning and explanations of steps to team members if
  necessary, ensures problem and data interpretation is correct (e.g., I am not sure we are on the right track).
• Energizer: energizes the team when motivation is low by suggesting a new idea (e.g., we can do this!), through
  humor or by being enthusiastic (e.g., that is a great idea!). Summarizes (restates) the team's discussion and
  conclusions (e.g., so here is what we have decided).
These roles should be better to rotate for every assignment. The student teams would be better to be formed by
sociometric tests and sociograms.
Also, the following suggestions of Michaelsen et al. (1997) for the design of effective team activities should be taken
into consideration in team formation:

• team activities and assignments can be a highly effective tool for developing both students’ mastery of basic
  conceptual material and their higher-level thinking and problem solving skills.
• the vast majority of student or workshop participants dysfunctional behaviours (e.g., social loafing, one or two
  members dominating the discussion, etc.) and complaints (e.g., having to carry the dead wood, the instructor is not
  teaching, etc.) are the result of bad assignments not bad learners.
• the key to designing effective team assignments is to maximize the extent to which the learning tasks promote the
  development of cohesive learning teams, and
• the single best way to gauge the effectiveness of team assignments is the observe the level of energy that is present
  when the results of the small team discussions are reported to the class as a whole.


3. Scenario Framework
The proposed scenario framework consists of five activities. In each activity, the students study different section of
electric circuits. This scenario may be taught in interdisciplinary instruction by the engagement of Mathematicians,
Physicians, and Electrical or Electronic Engineers. Team-teaching may be the most obvious way of getting
interdisciplinary instruction into the classroom. Student learning outcomes expressed at all six levels of Bloom's
taxonomy become the foundation for the selection and design of assignments, teaching strategies, and instructional
materials such as simulations based on the CircuitMaker software. The six levels of Bloom's taxonomy reflect not only
the importance of acquiring information but also the intellectual processes of application, analysis, evaluation, and

                                                          29
Journal of Education and Practice                                                                       www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

creation by which we transform raw data into formalized knowledge structures. Utilizing the taxonomy during the
instructional planning stage, we can establish the ability to construct knowledge as a meaningful student learning
outcome and embed its practice explicitly into the essential components of their courses (e.g., classroom instruction,
evaluation). Bloom's taxonomy has proven itself a flexible and enduring structure to help define the parameters of the
constructivist classroom, lend rigor to the teaching of critical thinking skills, and guide purposeful learning in
contemporary postsecondary teaching environments (Lee, 1999).
Also, within an epistemological framework, the tenets of constructivism as pertaining to instructional practice may be
summed up as follows. Firstly, understanding is a creative process resulting from the construction of knowledge in the
mind of the individual. Secondly, therefore, real learning requires deep cognitive engagement by the learner in
purposeful and effortful activities. Finally, the learner needs to incorporate new knowledge correctly by recognizing
symmetries, similarities and differences between a range of ideas, concepts, observations and experiences. Neither the
creative powers nor the prior knowledge of the learner may be ignored. The learner needs to relate new knowledge both
to previously learned knowledge and to experiential phenomena so that he or she can build a consistent picture of the
physical world (Buffler and Allie, 1993).
As I mentioned above, the proposed scenario uses inquiry-based simulations, explorations, guided discovery, and
communication. Students actively construct knowledge by designing experiments, making observations, proposing
hypotheses, solving problems, answering questions, gathering and analyzing data, synthesizing, comparing, creating
explanations, and communicating. The proposed scenario may last up to five didactic hours.
The curriculum area and pedagogic activities of the scenario are the following:
3.1. Curriculum area
Subject/discipline area: Physics education; The objective purpose of physics education is to familiarize students with
physical phenomena.
Context/level of study: Senior High school or Technical High School. The scenario is implemented in the penultimate
grade of the Senior High School; students are 16-18 years old. A class of 21 to 24 students may participate in the
scenario implementation (6 to 7 student teams).
Topic/domain: Simple Electric Circuits (chapter 2 of the national course book; it includes the following subchapters: 1.
Ohm’s law, 2. Series circuits, 3. Parallel circuits, 4. Series-Parallel combination circuits)
Pre-requisite skills/ knowledge: Learners should be able to improve their own learning and performance, solve
problems, and work with other learners. They must know to solve simple mathematical equations in the form of ay+bx
= c and draw graphs.
3.2. Pedagogic Activities
Learning tasks/activities: Teacher initiates students to what he or she is going to teach through an introductory
discussion. He/She uses the CircuitMaker software and five organized activities.
Learning objectives/outcomes
• Learn about operational differences between series, parallel, and combination resistance circuits.
• Learn to predict outcomes and draw conclusions.
• Learn about teamwork and working in teams.
• Learn that different circuit designs result in different electrical behaviours.
• Raise learners’ interest towards the electric circuit investigation and discovery principles and concepts through
  inquiry-based simulations, explorations, and guided discovery.
• After testing several predictions about each circuit type, the teams will compare results and discuss findings.
• In general, students learn how to learn.
Tools/ Resources: Traditional course book, CircuitMaker software, Worksheets of activities, Whiteboard.
Assessment Strategy : Oral questioning and discussion between student teams and teacher.
Time allocated: Up to five didactic hours.
                                                           30
Journal of Education and Practice                                                                       www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

The worksheets of the activities were created based upon the following National Science Education Standards (Olson
and Loucks-Horsley, 2000):
• the material provides a sequence of learning activities connected in such a way as to help students build abilities of
  inquiry, understandings of inquiry, and/or fundamental science subject matter concepts, and specific means (e.g.,
  connections among activities, building from concrete to abstract, and embedded assessments) to help the teacher
  keep students focused on the purpose of the lesson,
• the teacher’s guide present common student difficulties in learning inquiry abilities and understandings,
• there are suggestions provided to access prior abilities and understandings of students,
• opportunities for students are given to demonstrate the same understandings as part of their investigations.
The instructor and tutors monitor the progress of the teams and provide assistance only when requested. Students are
encouraged to discover concepts and formulas through experimentations, observations and inquires, and in turn, use
what they discovered, to solve challenging problems.
3.3 Activities
General Directions: You will need the CircuitMaker software (Student Edition) for these assignments. Use the guides
of the worksheets to answer the questions. Observe the experimentations and save your experimental findings in your
notebook so that you can use that information for analyzing them, drawing the graphs, etc. Use scientific criteria to
analyze alternative explanations. Discuss with your partners of both roles and limitations of skills such as organizing
and interpreting data, and constructing explanations. You should work in teams of three (recommended) or four
members.
3.3.1 Activity 1
Title: Ohm’s law
Lesson Focus: Discovery of Ohm’s law by using inductive reasoning.
Lesson Synopsis: This activity encourages student teams to experiment, observe, make tentative hypothesis, gather and
interpret data as well as to use the data in drawing graphs, and formulate the theory of Ohm’s law by using inductive
reasoning.
Prerequisites: Concepts of Voltage, Current, and Resistance. Graph of linear equation. Knowing of inductive
reasoning.
 Worksheet 1
1. Make the following simulation in the CircuitMaker software, vary the value of the voltage of the source Vs1 from 0
   to 10 with a step of 2, complete the Table 1, and answer the questions below.




                                                          31
Journal of Education and Practice                                                                          www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

Table 1. Results of the Activity 1
                                    V    [DC V]                                   I [DC A]
                     0
                     2
                     4
                     6
                     8
                  10
Exploratory Questions
a. Do the values of the quantities V and I in the Table 1 vary in a linear way? If yes, what kind of mathematical
   equation is it?
2. Draw a graph next to the graph of linear equation of the Fig. 1 by using your measurements in the Table 1, and
   answer the questions below.

           y             Graph of Linear equation           V         : students’ possible measurements
                                y = 10 · x
           10                                               10


           8                                                8


           6                                                6

                         Α = tanθ                                         ? = tanθ
           4                                                4
                0         0,2           0,4       0,6 x           0         0,2       0,4       0,6   I
                                          y                                       V
                                Α = tanθ = = 10                         ? = tanθ = = ?
                                          x                                       I

                                Figure 1. Examination if the two graphs have the same tanθ
Exploratory Questions
a. Are the graphs similar? (examine if the graphs have the same tanθ).
b. If the tanθ is the same in both of graphs, which is the relation between the resistance R and A?
3. A tentative hypothesis is that the R= tanθ=V/I is applied for all the values of the resistance R. Repeat the steps 1 and
   2 for the values 5 Ohm and 25 Ohm of the resistance R, and answer the questions below.
Exploratory Questions
a. Is the resistance R equal to tanθ in all three graphs?
b. Which is the relationship among the voltage(V), current(I), and resistance(R) for the values of resistance 5, 10, and
   25 Ohm?
c. Use inductive reasoning to generalize the relationship among the voltage(V), current(I), and resistance(R). This law
   of the simple electric circuit is the Ohm’s Law.
3.3.2 Activity 2
Title: Series circuits
Lesson Focus: Discovery of formulas and principles of series circuits.

                                                                 32
Journal of Education and Practice                                                                          www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

Lesson Synopsis: This activity encourages students to test two different circuit designs (a simple electric circuit versus
a serial circuit). Students work in teams to find out similarities and differences between the two circuit designs by
comparing them in order to discover the principles and formulas of the new circuit.
Prerequisites: Ohm’s law.
 Worksheet 2
1. Make the following simulations of the circuits A and B.
                Circuit A                                                                      Circuit B




2. Make predictions about the values of Is1, VR1, Is2, VR2, and VR3 if both values of the voltages Vs1 and Vs2
   are10V.
3. Vary the value of the voltage of both sources Vs1 and Vs2 from 0 to 10 with a step of 2, complete the Table 2, and
   answer the questions below.
Table 2. Results of the Activity 2
                   Vs1       Is1      VR1       Vs2      Is2     Is2*R2     Is2*R3      VR2      VR3
                  0                           0
                  2                           2
                  4                           4
                  6                           6
                  8                           8
                 10                           10
Exploratory Questions
a. For the same voltage of both sources Vs1 and Vs2 of the two circuits A and B, do you observe the same current Is1
   and Is2, respectively? If yes, what can we conclude about the total (or equivalent) resistance of the circuit B? Which
   is the formula calculating the total resistance in series circuits?
b. Use inductive reasoning to generalize the formula of the total resistance in series circuits with more than two
   resistances.
c. For each value of the voltage of the source Vs2 which is the sum of VR2 (voltage drop across the resistance R2) and
   VR3 (voltage drop across the resistance R3)? What can we conclude about the relationship among the voltages Vs2,
   VR2, and VR3?
d. Use inductive reasoning to generalize the equation connecting the voltage Vs2 with the voltage drops across the
   resistances in series circuits with more than two resistances.
e. Compare the relationship between the Is2*R2 and VR2, as well as between the Is2*R3 and VR3. What can we
   conclude about this comparison? How to calculate the voltage drop across series resistances?
f. Use inductive reasoning to generalize the formula calculating the voltage drop across resistances in circuits with
   more than two resistances in series.

                                                           33
Journal of Education and Practice                                                                         www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

3.3.3 Activity 3
Title: Parallel circuits
Lesson Focus: Discovery of formulas and principles of the parallel circuits.
Lesson Synopsis: This activity encourages students to test two different circuit designs (a simple electric circuit versus
a parallel circuit). Students work in teams to find out the similarities and differences between the two circuit designs,
by comparing them, in order to discover the principles and formulas of the new circuit.
Prerequisites: Ohm’s law.
Worksheet 3
1. Make the following simulations of the circuits A and B.
                            Circuit                                                                                     A
   Circuit B




2. Make predictions about the values of Is1, VR1, Is2, VR2, IR2, IR3 if both values of the voltages Vs1 and Vs2
   are10V.
3. Vary the value of the voltage of both sources Vs1 and Vs2 from 0 to 10 with a step of 2, complete the Table 3, and
   answer the questions below.
Table 3. Results of the Activity 3
                    Vs1      Is1          Vs2        Is2        IR2      IR2*R2       IR3        IR3*R3
                0                     0
                2                     2
                4                     4
                6                     6
                8                     8
             10                       10
Exploratory Questions
a. For the same voltage of both sources Vs1 and Vs2, of the two circuits A and B, do you observe the same currents
   (Is1 and Is2, respectively)? If yes, what can we conclude about the total (or equivalent) resistance of the circuit B?
   Examine which of the following four formulas calculates the total resistance in circuits with two resistances in
   parallel.

   a1: R tot = R2 * R3 , a2: R tot = R2/R3, a3= 1 = 1 − 1 , a4= 1 = 1 + 1 or R tot = R2 * R3
                                               R tot R2 R3            R tot R2 R3                   R2 + R3
b. Use inductive reasoning to generalize the formula of the total resistance in circuits with more than two resistances in
   parallel.



                                                           34
Journal of Education and Practice                                                                        www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

c. For each value of the current Is2 which is the sum of IR2 (current flowing through the resistance R2) and IR3
   (current flowing through the resistance R3)? What can we conclude about the relationship among the currents Is2,
   IR2, and IR3?
d. Use inductive reasoning to generalize the equation connecting the current Is2 with the currents flowing through the
   resistances in circuits with more than two resistances in parallel.
e. Compare the relationship between the IR2*R2 and Vs2, as well as between the IR3*R3 and Vs2. What can we
   conclude about this comparison?
3.3.4 Activity 4
Title: Combination circuits
Lesson Focus: Discovery of formulas and principles of the combination of series and parallel circuits.
Lesson Synopsis: This activity encourages students to test two different circuit designs (a series circuit versus a
combination of two parallel resistances in series with a third resistance, and a combination of two serial resistances in
parallel with a third resistance). Students work in teams to find out the differences and similarities between the two
circuit designs, by comparing, them, in order to discover the principles and formulas of the new circuit.
Prerequisites: Ohm’s law, series and parallel circuits.
Worksheet 4
1. Make the following simulations of the circuits A and B.
                                          Circuit                                                                      A
   Circuit B




2. Make predictions about the values of Is1, Is2, IR2, IR3, VR1, VR5, VR2-3, and VR4 if both of the values of the
   voltages Vs1 and Vs2 are10V.
3. Vary the value of the voltage of both sources Vs1 and Vs2 from 0 to 10 with a step of 2, complete the Table 4, and
   answer the questions below.
Exploratory Questions
a. For the same voltage of both sources Vs1 and Vs2, of the two circuits A and B, do you observe the same currents
   (Is1 and Is2, respectively)? If yes, what can we conclude about the total (or equivalent) resistance of the circuit B?
   Which is the formula calculating the total resistance of the circuit B?
b. For the same value of the voltage of both sources Vs1 and Vs2, of the two circuits A and B, do you observe that both
   voltages of VR5 and VR4 have the same value, as well as that both voltages of VR1 and VR2-3 have the same
   value?

                                                           35
Journal of Education and Practice                                                                        www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

c. For each value of the current Is2, which is the sum of IR2 (current flowing through the resistance R2) and IR3
   (current flowing through the resistance R3)? What can we conclude about the relationship among the currents Is2,
   IR2, and IR3?
d. Compare the relationship among the voltages of Vs1, VR1, and VR5, as well as among the voltages of Vs2, VR2-3,
   and VR4 for all the values of the table 4. What can we conclude about this comparison?
Table 4. Results of the Activity 4
                   Vs1    Is1    VR1      VR5      Vs2       Is2     IR2      IR3      VR2-3      VR4
               0                                  0
               2                                  2
               4                                  4
               6                                  6
               8                                  8
              10                                10
4. Make the following simulations of the circuits A and B.
                     Circuit A                                                              Circuit B




5. Make predictions about the values of Is1, Is2, IR2, IR3, IR4, IR5-6, VR4, and VR5 if both of the values of the
   voltages Vs1 and Vs2 are 10V.
6. Make exploratory questions, such as above, in order to explore the simulations and decide about the formulas and
   principles of the circuit B by comparing it with the circuit A.
3.3.5 Activity 5
Title: Open-ended problem about electrical circuits.
Lesson Focus: Students use the knowledge about electrical circuits, obtained until now, to solve an open-ended
problem. Also, they should be able to restrict the number of solutions of the problem. This activity should be better to
be taught by using the brainstorming technique.
Lesson Synopsis: This activity encourages students to solve open-ended problems by dividing them into sub-problems.
Dividing the problem into sub-problems is an effective strategy for constructing the solution. Thus, the solution
process involves repeated applications of the following two steps: (i) choosing some useful sub-problems, and (ii)
carrying out the solution of these sub-problems. These steps can then be recursively repeated until the original problem
has been solved. The decisions needed to solve a problem arisen from choosing sub-problems (Gök, 2010).
Prerequisites: Series, Parallel, and Combination of resistance circuits.
Worksheet 5
Problem definition: How many ways can we connect the resistances R1=2Ohm, R2=3Ohm,and R3=6Ohm?
Problem restrictions: In order to restrict the number of solutions of the problem, we should modify the problem so that
it to give the lower limit of solutions. In your opinion, which of the modifications below may assist you to restrict the

                                                           36
Journal of Education and Practice                                                                       www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

number of solutions of the problem to the lower limit?
a. How many ways can we connect the resistances R1=2Ohm, R2=3Ohm, and R3=6Ohm so that each of the possible
   connections to give the same total resistance?
b. How many ways can we connect the resistances R1=2Ohm, R2=3Ohm, and R3=6Ohm so that each of the possible
   connections to give different total resistance?
c. How many ways can we connect the resistances R1=2Ohm, R2=3Ohm, and R3=6Ohm so that each of the possible
   connections to give one only value to the total resistance?
Division of the problem into sub-problems: For the case (b) of the above modifications, divide the problem into four
sub-problems. For example, one sub-problem should examine the solutions of series circuits. In this case, you should
find out the possible solutions before and after the restrictions.
Decision making and criteria judging the best solutions: For the case (b) of the above modifications of the initial
problem, the criteria for judging which solutions best solve the problem are the following:
Sub-problem1: For series resistances it should be possible to give one only solution among equivalent possible
solutions (weight=25%).
Sub-problem2: For parallel resistances it should be possible to give one only solution among equivalent possible
solutions (weight=25%).
Sub-problem3: For two series resistances in parallel with the third one, it should be possible to give three solutions
among equivalent possible solutions (weight=25%).
Sub-problem4: For two parallel resistances in series with the third one, it should be possible to give three solutions
among equivalent possible solutions (weight=25%).
The idea with the highest score will best solve the problem. But, you should keep a record of all of your best ideas and
their scores in case your best idea turns out not to be workable.


4. Conclusion
In this paper a scenario framework and its application in the curriculum of Senior High Schools or Technical High
Schools is described. The presented scenario framework begins with exploratory activities on simple electrical circuits
and finishes with an open-ended problem solving activity. This scenario aims at the development of exploratory and
critical thinking of students, the development of make-decision skills and knowledge transfer skills from one
framework to another, the ability of collaboration and in common approach of problem solving. Moreover, this
scenario helps the students construct and co-construct their own deep understanding and knowledge on electrical
circuits through inquiry-based simulations, explorations, guided discovery, collaboration, and by comparing a known
with an unknown electrical circuit as well. In this way, the students discover principles and formulas of the unknown
electrical circuits. The role of the student teams is very important for the improvement of each student achievement.
This scenario framework is a difficult, too bold but not out of reach scenario. Nevertheless, it has adopted and applied
by educators with a great success. The enthusiasm of the participants was apparent.


5. References
Abdullah, S. and Shariff, A. (2008). The effects of inquiry-based computer simulation with cooperative learning on
scientific thinking and conceptual understanding of gas laws. Eurasia Journal of Mathematics, Science and
Technology Education, 4(4), 387-398.
Baker, D.P., Day, R., and Salas E. (2006). Teamwork as an essential component of high-reliability organizations.
Health Serv Res. 41(42), 1576-1598.
Barkley, E., Cross, P., & Major, C. (2005). Cooperative Learning Techniques. San Francisco: Jossey-Bass.
Buffler, A. and Allie, S. (1993). Towards an active learning environment in physics: developing problem solving skills
through cooperative learning. In Proceedings of the Annual Conference of the South African Association of Academic

                                                          37
Journal of Education and Practice                                                                     www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

Development, Bellville,15-29.
Carroll M. J. (1999). Five Reasons for Scenario-based Design, Proc. of the 32nd Hawaii International Conference on
System Sciences, 3.
Chi, M.T.H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical
shift. In S. Vosniadou (ed.), Handbook of research on conceptual change (61-82). Hillsdale, NJ: Erlbaum.
Concari, S., Giorgi, S., Cámara, C., and Giacosa, N. (2006). Instructional Strategies Using Simulations for Physics
Teaching. Journal of Current Developments in Technology-Assisted Education, 2042-2046.
Crook, C. (1994). Computers and the Cooperative Experiences of Learning. London: Routledge.
DiSessa, A. (2001). Changing Minds: Computers, Learning, and Literacy. Cambridge: MIT Press.
Duit, R. & von Rhöneck, C. (1998). Learning and understanding key concepts of electricity. In A. Tiberghien, E.J.
Jossem & J. Barajos (eds.) Connecting research in physics education with teacher education.
Gök, T. (2010). A new approach: Computer-assisted problem-solving systems. Asia-Pacific Forum on Science
Learning and Teaching, 11(2).
Heller, P., & Hollabaugh, M., (1992). Teaching problem solving through cooperative teaming. Part 2: Designing
problems and structuring teams, American Journal of Physics, 60, 637-644.
Hung, D. & Chen, D. (2002). Two kinds of scaffolding: The dialectical process within the authenticity-generalizability
(A-G) continuum. Education Technology & Society, 5(4), 148-153.
Johnson, D. W., Johnson, R.T. (1989). Cooperation & Competition: Theory and research. Edina, MN: International
Book Company.
Lee, V. S. (1999). Creating a Blueprint for the Constructivist Classroom. The National Teaching and Learning Forum,
8(4), 1-4.
Lombardi, M.M, (2007). Authentic Learning for the 21st Century: An Overview. ELI's 2007 series on authentic
learning. Educauce learning Initiative.
Maloney, D.P. (1994). Research on Problem Solving: Physics. Handbook of Research in Science Teaching and
Learning, D.L. Gabel, (Ed.). New York: Macmillan. 327-354.
McDermott, L. & Shaffer, P. (1992). Research as a guide for curriculum development: An example from introductory
electricity. American journal of physics, 60(11), 994-1013.
Michaelsen, L. K., Fink, L. D. & Knight, A. (1997). Designing effective team activities: Lessons for classroom
teaching and faculty development. In D. DeZure (ed.), To improve the academy: Resources for faculty, instructional,
and organizational development, Stillwater, OK: New Forums Press, 16, 373-397.
Oakley, B, Felder, R.M, Brent, R., & Elhajj, E. (2004). Turning student teams into effective teams. Journal of Student
Centered Learning, 2(1), 9-34.
Olson, S. and Loucks-Horsley, S. (eds). (2000). Inquiry and the National Science Education Standards: A Guide for
Teaching and Learning. Copyright © National Academy of Sciences. All rights reserved.
Reif, F. & Scott, L.A. (1999). Teaching scientific thinking skills: Students and computers Coaching each other.
American Journal of Physics, 67, 819–831.
Ronen, M. & Eliahu, M. (2000). Simulation. A bridge between theory and reality: The case of electric circuits. Journal
of computer assisted learning, 16(1), 14-26.
Rosenshine, B. & Meister, C. (1992). The use of scaffolds for teaching higher level cognitive strategies. Educational
Leadership, 26-33.
Snowman, J., McCown, R., & Biehler, R. (2008). Psychology Applied to Teaching. (12th ed.)
Tao, P-K., & Gunstone, R.F. (1999). Conceptual Change in Science through Cooperative Learning at the Computer.
International Journal of Science Education. 21(1), 39-57.
Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Cambridge, Mass: Harvard
                                                         38
Journal of Education and Practice                                                               www.iiste.org
ISSN 2222-1735 (Paper) ISSN 2222-288X (Online)
Vol 3, No 7, 2012

University Press. Wadsworth Publishing Company.
Wang, T. & Andre, T. (1991). Conceptual change text versus traditional text and application questions versus no
questions in learning about electricity. Contemporary educational psychology, 16, 103-116.




                                                      39
This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org


The IISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. Prospective authors of
IISTE journals can find the submission instruction on the following page:
http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified
submissions in a fast manner. All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than
those inseparable from gaining access to the internet itself. Printed version of the
journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

Mais conteúdo relacionado

Mais procurados

Effectiveness of computer assisted stad cooperative learning strategy on phys...
Effectiveness of computer assisted stad cooperative learning strategy on phys...Effectiveness of computer assisted stad cooperative learning strategy on phys...
Effectiveness of computer assisted stad cooperative learning strategy on phys...Gambari Amosa Isiaka
 
Applying Learning Principles based on Cognitive Science to Improve Training ...
Applying Learning Principles based on Cognitive Science to  Improve Training ...Applying Learning Principles based on Cognitive Science to  Improve Training ...
Applying Learning Principles based on Cognitive Science to Improve Training ...Dr.Kumuda Gururao
 
Cognitive process dimension in rbt explanatory notepages
Cognitive process dimension in rbt  explanatory notepagesCognitive process dimension in rbt  explanatory notepages
Cognitive process dimension in rbt explanatory notepagesArputharaj Bridget
 
Practicum MLRG
Practicum MLRGPracticum MLRG
Practicum MLRGAaron
 
Edu690 m tyrie final project presentation copy
Edu690 m tyrie final project presentation copyEdu690 m tyrie final project presentation copy
Edu690 m tyrie final project presentation copyMatt Tyrie
 
Self-Efficacy, Scientific Reasoning, and Learning Achievement in the STEM Pro...
Self-Efficacy, Scientific Reasoning, and Learning Achievement in the STEM Pro...Self-Efficacy, Scientific Reasoning, and Learning Achievement in the STEM Pro...
Self-Efficacy, Scientific Reasoning, and Learning Achievement in the STEM Pro...Nader Ale Ebrahim
 
Teacher Technology Change : How Knowledge, Confidence, Beliefs and Culture In...
Teacher Technology Change : How Knowledge, Confidence, Beliefs and Culture In...Teacher Technology Change : How Knowledge, Confidence, Beliefs and Culture In...
Teacher Technology Change : How Knowledge, Confidence, Beliefs and Culture In...Hamzani Wathoni
 
Making scientific concepts explicit through explanations simulations of a hig...
Making scientific concepts explicit through explanations simulations of a hig...Making scientific concepts explicit through explanations simulations of a hig...
Making scientific concepts explicit through explanations simulations of a hig...Lazar Stosic
 
Modelling the relationship between mathematical reasoning ability and mathema...
Modelling the relationship between mathematical reasoning ability and mathema...Modelling the relationship between mathematical reasoning ability and mathema...
Modelling the relationship between mathematical reasoning ability and mathema...Alexander Decker
 
33 using dual mapping learning approach
33 using dual mapping learning approach33 using dual mapping learning approach
33 using dual mapping learning approachCITE
 
Paper Review - "Problems Underlying the Learning Object Approach", Sami Nurmi...
Paper Review - "Problems Underlying the Learning Object Approach", Sami Nurmi...Paper Review - "Problems Underlying the Learning Object Approach", Sami Nurmi...
Paper Review - "Problems Underlying the Learning Object Approach", Sami Nurmi...Stephen McConnachie
 
Technological persuasive pedagogy a new way to persuade students in the compu...
Technological persuasive pedagogy a new way to persuade students in the compu...Technological persuasive pedagogy a new way to persuade students in the compu...
Technological persuasive pedagogy a new way to persuade students in the compu...Alexander Decker
 
ZDM2014Articulo presmeg español
ZDM2014Articulo presmeg españolZDM2014Articulo presmeg español
ZDM2014Articulo presmeg españolEly Hernandez
 

Mais procurados (19)

Effectiveness of computer assisted stad cooperative learning strategy on phys...
Effectiveness of computer assisted stad cooperative learning strategy on phys...Effectiveness of computer assisted stad cooperative learning strategy on phys...
Effectiveness of computer assisted stad cooperative learning strategy on phys...
 
Applying Learning Principles based on Cognitive Science to Improve Training ...
Applying Learning Principles based on Cognitive Science to  Improve Training ...Applying Learning Principles based on Cognitive Science to  Improve Training ...
Applying Learning Principles based on Cognitive Science to Improve Training ...
 
Cognitive process dimension in rbt explanatory notepages
Cognitive process dimension in rbt  explanatory notepagesCognitive process dimension in rbt  explanatory notepages
Cognitive process dimension in rbt explanatory notepages
 
Practicum MLRG
Practicum MLRGPracticum MLRG
Practicum MLRG
 
Edu690 m tyrie final project presentation copy
Edu690 m tyrie final project presentation copyEdu690 m tyrie final project presentation copy
Edu690 m tyrie final project presentation copy
 
Paper Folding
Paper FoldingPaper Folding
Paper Folding
 
Self-Efficacy, Scientific Reasoning, and Learning Achievement in the STEM Pro...
Self-Efficacy, Scientific Reasoning, and Learning Achievement in the STEM Pro...Self-Efficacy, Scientific Reasoning, and Learning Achievement in the STEM Pro...
Self-Efficacy, Scientific Reasoning, and Learning Achievement in the STEM Pro...
 
Teacher Technology Change : How Knowledge, Confidence, Beliefs and Culture In...
Teacher Technology Change : How Knowledge, Confidence, Beliefs and Culture In...Teacher Technology Change : How Knowledge, Confidence, Beliefs and Culture In...
Teacher Technology Change : How Knowledge, Confidence, Beliefs and Culture In...
 
10.1007%2 fs40299 015-0237-2
10.1007%2 fs40299 015-0237-210.1007%2 fs40299 015-0237-2
10.1007%2 fs40299 015-0237-2
 
Philip Siaw Kissi
Philip Siaw KissiPhilip Siaw Kissi
Philip Siaw Kissi
 
Making scientific concepts explicit through explanations simulations of a hig...
Making scientific concepts explicit through explanations simulations of a hig...Making scientific concepts explicit through explanations simulations of a hig...
Making scientific concepts explicit through explanations simulations of a hig...
 
Modelling the relationship between mathematical reasoning ability and mathema...
Modelling the relationship between mathematical reasoning ability and mathema...Modelling the relationship between mathematical reasoning ability and mathema...
Modelling the relationship between mathematical reasoning ability and mathema...
 
APR2 POD 2012
APR2 POD 2012APR2 POD 2012
APR2 POD 2012
 
Research Study
Research StudyResearch Study
Research Study
 
33 using dual mapping learning approach
33 using dual mapping learning approach33 using dual mapping learning approach
33 using dual mapping learning approach
 
Paper Review - "Problems Underlying the Learning Object Approach", Sami Nurmi...
Paper Review - "Problems Underlying the Learning Object Approach", Sami Nurmi...Paper Review - "Problems Underlying the Learning Object Approach", Sami Nurmi...
Paper Review - "Problems Underlying the Learning Object Approach", Sami Nurmi...
 
Technological persuasive pedagogy a new way to persuade students in the compu...
Technological persuasive pedagogy a new way to persuade students in the compu...Technological persuasive pedagogy a new way to persuade students in the compu...
Technological persuasive pedagogy a new way to persuade students in the compu...
 
ZDM2014Articulo presmeg español
ZDM2014Articulo presmeg españolZDM2014Articulo presmeg español
ZDM2014Articulo presmeg español
 
EFFECTIVENESS OF HEUTAGOGY INTEGRATED E-CONTENT MODULES ON UNDESTANDING OSMOS...
EFFECTIVENESS OF HEUTAGOGY INTEGRATED E-CONTENT MODULES ON UNDESTANDING OSMOS...EFFECTIVENESS OF HEUTAGOGY INTEGRATED E-CONTENT MODULES ON UNDESTANDING OSMOS...
EFFECTIVENESS OF HEUTAGOGY INTEGRATED E-CONTENT MODULES ON UNDESTANDING OSMOS...
 

Semelhante a A scenario based learning of electrical circuits

The effects of collaborative learning on problem solving abilities among seni...
The effects of collaborative learning on problem solving abilities among seni...The effects of collaborative learning on problem solving abilities among seni...
The effects of collaborative learning on problem solving abilities among seni...Alexander Decker
 
Understand addition through modelling and manipulation of concrete materials
Understand addition through modelling and manipulation of concrete materialsUnderstand addition through modelling and manipulation of concrete materials
Understand addition through modelling and manipulation of concrete materialsAlexander Decker
 
A Framework To Foster Problem-Solving In STEM And Computing Education
A Framework To Foster Problem-Solving In STEM And Computing EducationA Framework To Foster Problem-Solving In STEM And Computing Education
A Framework To Foster Problem-Solving In STEM And Computing EducationDereck Downing
 
An ICT Environment To Assess And Support Students Mathematical Problem-Solvi...
An ICT Environment To Assess And Support Students  Mathematical Problem-Solvi...An ICT Environment To Assess And Support Students  Mathematical Problem-Solvi...
An ICT Environment To Assess And Support Students Mathematical Problem-Solvi...Vicki Cristol
 
Jurnal utama tentang media
Jurnal utama tentang mediaJurnal utama tentang media
Jurnal utama tentang mediaNining Ningsih
 
An Exercise To Teach The First Law Of Thermodynamics For An Open System Using...
An Exercise To Teach The First Law Of Thermodynamics For An Open System Using...An Exercise To Teach The First Law Of Thermodynamics For An Open System Using...
An Exercise To Teach The First Law Of Thermodynamics For An Open System Using...Kelly Lipiec
 
The convergence of mayer’s model and constructivist model towards problem sol...
The convergence of mayer’s model and constructivist model towards problem sol...The convergence of mayer’s model and constructivist model towards problem sol...
The convergence of mayer’s model and constructivist model towards problem sol...Alexander Decker
 
Log Vis All 0729
Log Vis All 0729Log Vis All 0729
Log Vis All 0729hsinyichang
 
formative e-assessment: a scoping study
formative e-assessment: a scoping studyformative e-assessment: a scoping study
formative e-assessment: a scoping studyYishay Mor
 
Jurnal ijssh rufi'i
Jurnal ijssh rufi'iJurnal ijssh rufi'i
Jurnal ijssh rufi'iRufi'i Rufii
 
Development of mathematical learning based contextual model in south minahasa...
Development of mathematical learning based contextual model in south minahasa...Development of mathematical learning based contextual model in south minahasa...
Development of mathematical learning based contextual model in south minahasa...Alexander Decker
 
A General Analytical Model For Problem Solving Teaching BoS
A General Analytical Model For Problem Solving Teaching  BoSA General Analytical Model For Problem Solving Teaching  BoS
A General Analytical Model For Problem Solving Teaching BoSDereck Downing
 
Tpack e learning
Tpack   e learningTpack   e learning
Tpack e learningrobynjoy
 
A Guided Inquiry Laboratory To Enhance Students Understanding Of The Law Of ...
A Guided Inquiry Laboratory To Enhance Students  Understanding Of The Law Of ...A Guided Inquiry Laboratory To Enhance Students  Understanding Of The Law Of ...
A Guided Inquiry Laboratory To Enhance Students Understanding Of The Law Of ...Stephen Faucher
 
A Hybrid Approach To Promoting Students Web-Based Problem-Solving Competence...
A Hybrid Approach To Promoting Students  Web-Based Problem-Solving Competence...A Hybrid Approach To Promoting Students  Web-Based Problem-Solving Competence...
A Hybrid Approach To Promoting Students Web-Based Problem-Solving Competence...Amy Roman
 
An Intelligent Microworld as an Alternative Way to Learn Algebraic Thinking
An Intelligent Microworld as an Alternative Way to Learn Algebraic ThinkingAn Intelligent Microworld as an Alternative Way to Learn Algebraic Thinking
An Intelligent Microworld as an Alternative Way to Learn Algebraic ThinkingCITE
 
An Investigation Of The Use Of Paper Folding Manipulative Material On Learner...
An Investigation Of The Use Of Paper Folding Manipulative Material On Learner...An Investigation Of The Use Of Paper Folding Manipulative Material On Learner...
An Investigation Of The Use Of Paper Folding Manipulative Material On Learner...Samantha Vargas
 
A Know-How vs. Know-What Approach in the Teaching-Learning.pdf
A Know-How vs. Know-What Approach in the Teaching-Learning.pdfA Know-How vs. Know-What Approach in the Teaching-Learning.pdf
A Know-How vs. Know-What Approach in the Teaching-Learning.pdfAliZarif1
 
PHYSICS EDUCATIONAL TECHNOLOGY THAT EFFECTS ON STUDENT PERFORMANCE
PHYSICS EDUCATIONAL TECHNOLOGY  THAT EFFECTS ON STUDENT PERFORMANCEPHYSICS EDUCATIONAL TECHNOLOGY  THAT EFFECTS ON STUDENT PERFORMANCE
PHYSICS EDUCATIONAL TECHNOLOGY THAT EFFECTS ON STUDENT PERFORMANCEMuhammad Riaz
 

Semelhante a A scenario based learning of electrical circuits (20)

The effects of collaborative learning on problem solving abilities among seni...
The effects of collaborative learning on problem solving abilities among seni...The effects of collaborative learning on problem solving abilities among seni...
The effects of collaborative learning on problem solving abilities among seni...
 
Understand addition through modelling and manipulation of concrete materials
Understand addition through modelling and manipulation of concrete materialsUnderstand addition through modelling and manipulation of concrete materials
Understand addition through modelling and manipulation of concrete materials
 
A Framework To Foster Problem-Solving In STEM And Computing Education
A Framework To Foster Problem-Solving In STEM And Computing EducationA Framework To Foster Problem-Solving In STEM And Computing Education
A Framework To Foster Problem-Solving In STEM And Computing Education
 
An ICT Environment To Assess And Support Students Mathematical Problem-Solvi...
An ICT Environment To Assess And Support Students  Mathematical Problem-Solvi...An ICT Environment To Assess And Support Students  Mathematical Problem-Solvi...
An ICT Environment To Assess And Support Students Mathematical Problem-Solvi...
 
Jurnal utama tentang media
Jurnal utama tentang mediaJurnal utama tentang media
Jurnal utama tentang media
 
An Exercise To Teach The First Law Of Thermodynamics For An Open System Using...
An Exercise To Teach The First Law Of Thermodynamics For An Open System Using...An Exercise To Teach The First Law Of Thermodynamics For An Open System Using...
An Exercise To Teach The First Law Of Thermodynamics For An Open System Using...
 
The convergence of mayer’s model and constructivist model towards problem sol...
The convergence of mayer’s model and constructivist model towards problem sol...The convergence of mayer’s model and constructivist model towards problem sol...
The convergence of mayer’s model and constructivist model towards problem sol...
 
Log Vis All 0729
Log Vis All 0729Log Vis All 0729
Log Vis All 0729
 
formative e-assessment: a scoping study
formative e-assessment: a scoping studyformative e-assessment: a scoping study
formative e-assessment: a scoping study
 
Jurnal ijssh rufi'i
Jurnal ijssh rufi'iJurnal ijssh rufi'i
Jurnal ijssh rufi'i
 
Development of mathematical learning based contextual model in south minahasa...
Development of mathematical learning based contextual model in south minahasa...Development of mathematical learning based contextual model in south minahasa...
Development of mathematical learning based contextual model in south minahasa...
 
A General Analytical Model For Problem Solving Teaching BoS
A General Analytical Model For Problem Solving Teaching  BoSA General Analytical Model For Problem Solving Teaching  BoS
A General Analytical Model For Problem Solving Teaching BoS
 
Il modello TPCK
Il modello TPCKIl modello TPCK
Il modello TPCK
 
Tpack e learning
Tpack   e learningTpack   e learning
Tpack e learning
 
A Guided Inquiry Laboratory To Enhance Students Understanding Of The Law Of ...
A Guided Inquiry Laboratory To Enhance Students  Understanding Of The Law Of ...A Guided Inquiry Laboratory To Enhance Students  Understanding Of The Law Of ...
A Guided Inquiry Laboratory To Enhance Students Understanding Of The Law Of ...
 
A Hybrid Approach To Promoting Students Web-Based Problem-Solving Competence...
A Hybrid Approach To Promoting Students  Web-Based Problem-Solving Competence...A Hybrid Approach To Promoting Students  Web-Based Problem-Solving Competence...
A Hybrid Approach To Promoting Students Web-Based Problem-Solving Competence...
 
An Intelligent Microworld as an Alternative Way to Learn Algebraic Thinking
An Intelligent Microworld as an Alternative Way to Learn Algebraic ThinkingAn Intelligent Microworld as an Alternative Way to Learn Algebraic Thinking
An Intelligent Microworld as an Alternative Way to Learn Algebraic Thinking
 
An Investigation Of The Use Of Paper Folding Manipulative Material On Learner...
An Investigation Of The Use Of Paper Folding Manipulative Material On Learner...An Investigation Of The Use Of Paper Folding Manipulative Material On Learner...
An Investigation Of The Use Of Paper Folding Manipulative Material On Learner...
 
A Know-How vs. Know-What Approach in the Teaching-Learning.pdf
A Know-How vs. Know-What Approach in the Teaching-Learning.pdfA Know-How vs. Know-What Approach in the Teaching-Learning.pdf
A Know-How vs. Know-What Approach in the Teaching-Learning.pdf
 
PHYSICS EDUCATIONAL TECHNOLOGY THAT EFFECTS ON STUDENT PERFORMANCE
PHYSICS EDUCATIONAL TECHNOLOGY  THAT EFFECTS ON STUDENT PERFORMANCEPHYSICS EDUCATIONAL TECHNOLOGY  THAT EFFECTS ON STUDENT PERFORMANCE
PHYSICS EDUCATIONAL TECHNOLOGY THAT EFFECTS ON STUDENT PERFORMANCE
 

Mais de Alexander Decker

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inAlexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesAlexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksAlexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dAlexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceAlexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifhamAlexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaAlexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenAlexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksAlexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabAlexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalAlexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesAlexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbAlexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloudAlexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveragedAlexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenyaAlexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health ofAlexander Decker
 

Mais de Alexander Decker (20)

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
 

Último

ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 

Último (20)

ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 

A scenario based learning of electrical circuits

  • 1. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 A Scenario-Based Learning of Electrical Circuits Alexandros Papadimitriou School Teacher Advisor of the Greek Ministry of Education, Athens, Greece apapadim@sch.gr Abstract This paper presents a framework of an educational scenario for the teaching of electrical circuits at senior high schools. This scenario aims at the development of exploratory and critical thinking of students, the development of make-decision skills and knowledge transfer skills from one framework to another, the ability of collaboration and in common approach of problem solving. During the lessons, the student teams discover the formulas and principles of the total resistance, the voltage drop across the resistances, and the flowing current through the resistances, in series, in parallel, and in combination resistance circuits by comparing the circuits with each other and guided by the exploratory questions and scaffolding as well. At the end, the student teams solve an open-ended problem based upon their knowledge obtained through the activities. This framework has adopted and applied by educators with a great success. Keywords: Educational scenario, Problem solving, Social constructivism, Cooperative learning. 1. Introduction The aim if this paper is to present an innovative scenario framework for the learning of electrical circuits by senior high school students or technical high school students. Numbers of studies on the learning of electrical circuits indicate that students still have many difficulties and misunderstandings after systematic instruction (McDermott & Shaffer, 1992; Duit & von Rhöneck, 1998). Most typical difficulties are inabilities to relate theoretical models of electricity to real circuits, incomplete understanding of basic concepts of electricity, and incapacity to reason about the behaviour of electrics (McDermott & Shaffer, 1992; Duit & von Rhöneck, 1998). These difficulties and misconceptions seem to be very resistant to change (Chi, 2008). There have been several attempts to overcome the difficulties in electricity learning. Traditional electricity teaching using textual learning material, concrete application tasks or hands-on laboratory work has been quite ineffective. After series of instruction learners have been still found to hold many misconceptions about electricity. The use of application questions and tasks has reported to be partially useful for developing understanding of electricity concepts (Wang & Andre, 1991). Research also indicates that laboratory-based hands-on activities can offer special benefits for understanding of concepts and correcting misconceptions (McDermott & Shaffer, 1992). However, some of the misconceptions are so strong and resistant that even direct experience with the real phenomena may not always be effective for changing students opinions (Ronen & Eliahu, 2000). There have also been attempts to replace hands-on laboratory work with electricity simulations. Results of these studies provide rather inconsistent picture about the effectiveness of simulations compared to laboratory exercises. Some studies speak in favour of simulations (Ronen & Eliahu, 2000). Inquiry-based simulations may provide one solution (Hung & Chen, 2002). Students are required to resolve their cognitive conflict through visualization of physical phenomena via dynamic computer simulation and peer support in cooperative learning groups (Abdullah and Shariff, 2008). DiSessa (2001) suggests that Physics is best taught through experiments, labs, demonstrations and visualizations which help the learners understand physical phenomena conceptually. According to Concari et al (2006), Physics being an experimental science, observation, measuring and theoretical speculations are processes that cannot be separated from the physical knowledge construction, even in the classroom. According to Snowman et al (2008), educators should consider stimulating the basic purposes of schooling curiosity, exploration, problem solving, and communication. Physics instructors generally believe that the problem-solving leads to the understanding of physics and that it is a reliable way to demonstrate the understanding for purposes of evaluation (Maloney, 1994). Also, physics education researchers have developed a number of strategies that have been shown to be effective in improving student problem 27
  • 2. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 solving performance, such as when students work with other students, or with a computer, where they must externalize and explain their thinking while they solve a problem (Reif & Scott, 1999). The problem-solving scenarios follow a socio-constructivist approach and promote the inductive and deductive way of learning, as students are encouraged to discover, test structures and apply the knowledge obtained to new situations. Generally, the scenarios promote and support problem-based learning, where students can be creative, learn how to combine knowledge from different thematic areas, can think critically, analytically, and learn how to solve real problems. While solving the problems, they are carefully guided to learn the associated concepts and procedures. Also, the scenarios would require students to reflect upon the whole resource by predicting, hypothesising, and experimenting to produce a solution and it also provides for coaching at critical times, and scaffolding of support, where the teacher provides the skills, strategies and links that the students are unable to complete the task (Carroll, 1999). Scaffolding is a process in which students are given support until they can apply new skills and strategies independently and it has been found to be an excellent method of developing students’ higher level thinking skills (Rosenshine & Meister, 1992). Vygotsky's (1978) theories of scaffolding knowledge through peer discussion and interaction has been applied systematically under the rubric of cooperative learning. Cooperative learning is an instructional technique in which students work together in structured small teams in order to accomplish shared goals (Johnson & Johnson, 1989). In cooperative team problem solving (Heller & Hollabaugh, 1992): (a) the students have a chance to practice the strategy until it becomes more practical; (b) complex problems can be solved easier by teams rather than individuals; (c) students get practice developing and using the language of physics; (d) in their discussion with each other, students must deal with and resolve their misconceptions; (e) at the brainstorming of the problems, students are less intimidated because they are not answering as an individual, but as a team. Additionally, the cooperative team problem solving positively affects on the attitude scores of students and on physics achievements and achievement motivation of students (Gök, 2010). Johnson & Johnson (1989), suggest that with the help of sufficient scaffolding, or dynamic team support in cooperative environments, provided by inquiry-based computer simulations, an instructor, a more skilled partner, or a more capable peer, will enable concrete operational students to enhance their reasoning skills toward formal thought. Activities supported by the proper scaffolding can help students develop expertise across all four domains of learning, as follows (Lombardi, 2007): (a) cognitive capacity to think, solve problems, and create; (b) affective capacity to value, appreciate, and care; (c) psychomotor capacity to move, perceive, and apply physical skills; and (d) conative capacity to act, decide, and commit. This paper aims to provide a scenario framework by using inquiry-based simulations, explorations, guided discovery and communication for helping students to better understand electricity and acquire correct scientific model about electrical circuits. Through a process of inquiry, the empirical evidence is transformed (e.g., natural phenomena) into revised and new knowledge structures (Lee, 1999). Explorations promote a new state of understanding or equilibrium or self-regulation when new concepts and principles are derived from the exploration experience where students collect and analyze data via computer simulation in cooperative learning team (Abdullah and Shariff, 2008). Creating a scenario is not a simple task. In order for it to be authentic, we must try to make the scenario as realistic as possible. Elements of a scenario include the role the students will play at each stage of scenario, the tools they will use, and the sequence of activities in which they will be engaged. For the sake of their joint activities, students need to articulate their opinions, predictions and interpretations. Conflict sometimes arises in peer collaboration when students disagree with each other in their interpretations or approaches to the task. When solving a problem, students co-construct shared knowledge and understanding by complementing and building on each other’s ideas (Tao & Gunstone, 1999). The remainder of this article is structured as follows. In the Section 2 the principles of team formation in the scenario are described. In the Section 3 the scenario framework is described, and in the Section 4 a conclusion for the present work is presented. 2. Team Formation in the Scenario In order to have effective teams we should take into account team policies and expectations. Effective teams are characterized by mutual trust and respect, acceptance, understanding, courtesy, ability, willingness, effective 28
  • 3. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 collaboration, and the low number of members who must possess specific knowledge, skills, shared beliefs and attitudes (Oakley et al., 2004; Baker et al., 2006). Research shows that students working in small teams tend to learn more of what is taught, retain it longer than when the same content is presented in other instructional formats, and appear more satisfied with their classes (Barkley et al., 2005). Taking into account the Oakley et al. (2004) suggestion, I adopt that the teams should be formed with three (recommended) or four students who have the top, average, lower and/or lowest scores. For three person teams, the specific roles should be assigned as follows: Coordinator, Recorder, and Discusser. For four person teams, the specific roles should be assigned as follows: Coordinator, Recorder, Discusser, and Energizer. The responsibilities for each role are defined below. • Coordinator: directs the sequence of steps (e.g., we need to move on to the next step), manages time (e.g., let us come back to this later if we have time), reinforces merits of everyone’s ideas, ensures that each team member participates, keeps team focused on task, summarizes (if there is no Energizer in the team) the team's discussion and conclusions (e.g., so here is what we have decided) or how the solution was attained. • Recorder: writes down actual steps, makes sure everyone understands both the solution and the strategy used to get it, checks for understanding of all team members (e.g., George, explain me this diagram) or for the final solution for accuracy and turns it in by the due date and time, makes sure all team members agree on each step of the problem solution or on plans and actions (e.g., are we in agreement on this?), submits reports for the team. • Discusser: makes sure all possibilities (e.g., possible problem-solving strategies or plans and actions) are explored (e.g., what other possibilities are there?), suggests alternative approaches or concerns with suggested solutions (e.g., let us try to look at this another way), provides reasoning and explanations of steps to team members if necessary, ensures problem and data interpretation is correct (e.g., I am not sure we are on the right track). • Energizer: energizes the team when motivation is low by suggesting a new idea (e.g., we can do this!), through humor or by being enthusiastic (e.g., that is a great idea!). Summarizes (restates) the team's discussion and conclusions (e.g., so here is what we have decided). These roles should be better to rotate for every assignment. The student teams would be better to be formed by sociometric tests and sociograms. Also, the following suggestions of Michaelsen et al. (1997) for the design of effective team activities should be taken into consideration in team formation: • team activities and assignments can be a highly effective tool for developing both students’ mastery of basic conceptual material and their higher-level thinking and problem solving skills. • the vast majority of student or workshop participants dysfunctional behaviours (e.g., social loafing, one or two members dominating the discussion, etc.) and complaints (e.g., having to carry the dead wood, the instructor is not teaching, etc.) are the result of bad assignments not bad learners. • the key to designing effective team assignments is to maximize the extent to which the learning tasks promote the development of cohesive learning teams, and • the single best way to gauge the effectiveness of team assignments is the observe the level of energy that is present when the results of the small team discussions are reported to the class as a whole. 3. Scenario Framework The proposed scenario framework consists of five activities. In each activity, the students study different section of electric circuits. This scenario may be taught in interdisciplinary instruction by the engagement of Mathematicians, Physicians, and Electrical or Electronic Engineers. Team-teaching may be the most obvious way of getting interdisciplinary instruction into the classroom. Student learning outcomes expressed at all six levels of Bloom's taxonomy become the foundation for the selection and design of assignments, teaching strategies, and instructional materials such as simulations based on the CircuitMaker software. The six levels of Bloom's taxonomy reflect not only the importance of acquiring information but also the intellectual processes of application, analysis, evaluation, and 29
  • 4. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 creation by which we transform raw data into formalized knowledge structures. Utilizing the taxonomy during the instructional planning stage, we can establish the ability to construct knowledge as a meaningful student learning outcome and embed its practice explicitly into the essential components of their courses (e.g., classroom instruction, evaluation). Bloom's taxonomy has proven itself a flexible and enduring structure to help define the parameters of the constructivist classroom, lend rigor to the teaching of critical thinking skills, and guide purposeful learning in contemporary postsecondary teaching environments (Lee, 1999). Also, within an epistemological framework, the tenets of constructivism as pertaining to instructional practice may be summed up as follows. Firstly, understanding is a creative process resulting from the construction of knowledge in the mind of the individual. Secondly, therefore, real learning requires deep cognitive engagement by the learner in purposeful and effortful activities. Finally, the learner needs to incorporate new knowledge correctly by recognizing symmetries, similarities and differences between a range of ideas, concepts, observations and experiences. Neither the creative powers nor the prior knowledge of the learner may be ignored. The learner needs to relate new knowledge both to previously learned knowledge and to experiential phenomena so that he or she can build a consistent picture of the physical world (Buffler and Allie, 1993). As I mentioned above, the proposed scenario uses inquiry-based simulations, explorations, guided discovery, and communication. Students actively construct knowledge by designing experiments, making observations, proposing hypotheses, solving problems, answering questions, gathering and analyzing data, synthesizing, comparing, creating explanations, and communicating. The proposed scenario may last up to five didactic hours. The curriculum area and pedagogic activities of the scenario are the following: 3.1. Curriculum area Subject/discipline area: Physics education; The objective purpose of physics education is to familiarize students with physical phenomena. Context/level of study: Senior High school or Technical High School. The scenario is implemented in the penultimate grade of the Senior High School; students are 16-18 years old. A class of 21 to 24 students may participate in the scenario implementation (6 to 7 student teams). Topic/domain: Simple Electric Circuits (chapter 2 of the national course book; it includes the following subchapters: 1. Ohm’s law, 2. Series circuits, 3. Parallel circuits, 4. Series-Parallel combination circuits) Pre-requisite skills/ knowledge: Learners should be able to improve their own learning and performance, solve problems, and work with other learners. They must know to solve simple mathematical equations in the form of ay+bx = c and draw graphs. 3.2. Pedagogic Activities Learning tasks/activities: Teacher initiates students to what he or she is going to teach through an introductory discussion. He/She uses the CircuitMaker software and five organized activities. Learning objectives/outcomes • Learn about operational differences between series, parallel, and combination resistance circuits. • Learn to predict outcomes and draw conclusions. • Learn about teamwork and working in teams. • Learn that different circuit designs result in different electrical behaviours. • Raise learners’ interest towards the electric circuit investigation and discovery principles and concepts through inquiry-based simulations, explorations, and guided discovery. • After testing several predictions about each circuit type, the teams will compare results and discuss findings. • In general, students learn how to learn. Tools/ Resources: Traditional course book, CircuitMaker software, Worksheets of activities, Whiteboard. Assessment Strategy : Oral questioning and discussion between student teams and teacher. Time allocated: Up to five didactic hours. 30
  • 5. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 The worksheets of the activities were created based upon the following National Science Education Standards (Olson and Loucks-Horsley, 2000): • the material provides a sequence of learning activities connected in such a way as to help students build abilities of inquiry, understandings of inquiry, and/or fundamental science subject matter concepts, and specific means (e.g., connections among activities, building from concrete to abstract, and embedded assessments) to help the teacher keep students focused on the purpose of the lesson, • the teacher’s guide present common student difficulties in learning inquiry abilities and understandings, • there are suggestions provided to access prior abilities and understandings of students, • opportunities for students are given to demonstrate the same understandings as part of their investigations. The instructor and tutors monitor the progress of the teams and provide assistance only when requested. Students are encouraged to discover concepts and formulas through experimentations, observations and inquires, and in turn, use what they discovered, to solve challenging problems. 3.3 Activities General Directions: You will need the CircuitMaker software (Student Edition) for these assignments. Use the guides of the worksheets to answer the questions. Observe the experimentations and save your experimental findings in your notebook so that you can use that information for analyzing them, drawing the graphs, etc. Use scientific criteria to analyze alternative explanations. Discuss with your partners of both roles and limitations of skills such as organizing and interpreting data, and constructing explanations. You should work in teams of three (recommended) or four members. 3.3.1 Activity 1 Title: Ohm’s law Lesson Focus: Discovery of Ohm’s law by using inductive reasoning. Lesson Synopsis: This activity encourages student teams to experiment, observe, make tentative hypothesis, gather and interpret data as well as to use the data in drawing graphs, and formulate the theory of Ohm’s law by using inductive reasoning. Prerequisites: Concepts of Voltage, Current, and Resistance. Graph of linear equation. Knowing of inductive reasoning. Worksheet 1 1. Make the following simulation in the CircuitMaker software, vary the value of the voltage of the source Vs1 from 0 to 10 with a step of 2, complete the Table 1, and answer the questions below. 31
  • 6. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 Table 1. Results of the Activity 1 V [DC V] I [DC A] 0 2 4 6 8 10 Exploratory Questions a. Do the values of the quantities V and I in the Table 1 vary in a linear way? If yes, what kind of mathematical equation is it? 2. Draw a graph next to the graph of linear equation of the Fig. 1 by using your measurements in the Table 1, and answer the questions below. y Graph of Linear equation V : students’ possible measurements y = 10 · x 10 10 8 8 6 6 Α = tanθ ? = tanθ 4 4 0 0,2 0,4 0,6 x 0 0,2 0,4 0,6 I y V Α = tanθ = = 10 ? = tanθ = = ? x I Figure 1. Examination if the two graphs have the same tanθ Exploratory Questions a. Are the graphs similar? (examine if the graphs have the same tanθ). b. If the tanθ is the same in both of graphs, which is the relation between the resistance R and A? 3. A tentative hypothesis is that the R= tanθ=V/I is applied for all the values of the resistance R. Repeat the steps 1 and 2 for the values 5 Ohm and 25 Ohm of the resistance R, and answer the questions below. Exploratory Questions a. Is the resistance R equal to tanθ in all three graphs? b. Which is the relationship among the voltage(V), current(I), and resistance(R) for the values of resistance 5, 10, and 25 Ohm? c. Use inductive reasoning to generalize the relationship among the voltage(V), current(I), and resistance(R). This law of the simple electric circuit is the Ohm’s Law. 3.3.2 Activity 2 Title: Series circuits Lesson Focus: Discovery of formulas and principles of series circuits. 32
  • 7. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 Lesson Synopsis: This activity encourages students to test two different circuit designs (a simple electric circuit versus a serial circuit). Students work in teams to find out similarities and differences between the two circuit designs by comparing them in order to discover the principles and formulas of the new circuit. Prerequisites: Ohm’s law. Worksheet 2 1. Make the following simulations of the circuits A and B. Circuit A Circuit B 2. Make predictions about the values of Is1, VR1, Is2, VR2, and VR3 if both values of the voltages Vs1 and Vs2 are10V. 3. Vary the value of the voltage of both sources Vs1 and Vs2 from 0 to 10 with a step of 2, complete the Table 2, and answer the questions below. Table 2. Results of the Activity 2 Vs1 Is1 VR1 Vs2 Is2 Is2*R2 Is2*R3 VR2 VR3 0 0 2 2 4 4 6 6 8 8 10 10 Exploratory Questions a. For the same voltage of both sources Vs1 and Vs2 of the two circuits A and B, do you observe the same current Is1 and Is2, respectively? If yes, what can we conclude about the total (or equivalent) resistance of the circuit B? Which is the formula calculating the total resistance in series circuits? b. Use inductive reasoning to generalize the formula of the total resistance in series circuits with more than two resistances. c. For each value of the voltage of the source Vs2 which is the sum of VR2 (voltage drop across the resistance R2) and VR3 (voltage drop across the resistance R3)? What can we conclude about the relationship among the voltages Vs2, VR2, and VR3? d. Use inductive reasoning to generalize the equation connecting the voltage Vs2 with the voltage drops across the resistances in series circuits with more than two resistances. e. Compare the relationship between the Is2*R2 and VR2, as well as between the Is2*R3 and VR3. What can we conclude about this comparison? How to calculate the voltage drop across series resistances? f. Use inductive reasoning to generalize the formula calculating the voltage drop across resistances in circuits with more than two resistances in series. 33
  • 8. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 3.3.3 Activity 3 Title: Parallel circuits Lesson Focus: Discovery of formulas and principles of the parallel circuits. Lesson Synopsis: This activity encourages students to test two different circuit designs (a simple electric circuit versus a parallel circuit). Students work in teams to find out the similarities and differences between the two circuit designs, by comparing them, in order to discover the principles and formulas of the new circuit. Prerequisites: Ohm’s law. Worksheet 3 1. Make the following simulations of the circuits A and B. Circuit A Circuit B 2. Make predictions about the values of Is1, VR1, Is2, VR2, IR2, IR3 if both values of the voltages Vs1 and Vs2 are10V. 3. Vary the value of the voltage of both sources Vs1 and Vs2 from 0 to 10 with a step of 2, complete the Table 3, and answer the questions below. Table 3. Results of the Activity 3 Vs1 Is1 Vs2 Is2 IR2 IR2*R2 IR3 IR3*R3 0 0 2 2 4 4 6 6 8 8 10 10 Exploratory Questions a. For the same voltage of both sources Vs1 and Vs2, of the two circuits A and B, do you observe the same currents (Is1 and Is2, respectively)? If yes, what can we conclude about the total (or equivalent) resistance of the circuit B? Examine which of the following four formulas calculates the total resistance in circuits with two resistances in parallel. a1: R tot = R2 * R3 , a2: R tot = R2/R3, a3= 1 = 1 − 1 , a4= 1 = 1 + 1 or R tot = R2 * R3 R tot R2 R3 R tot R2 R3 R2 + R3 b. Use inductive reasoning to generalize the formula of the total resistance in circuits with more than two resistances in parallel. 34
  • 9. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 c. For each value of the current Is2 which is the sum of IR2 (current flowing through the resistance R2) and IR3 (current flowing through the resistance R3)? What can we conclude about the relationship among the currents Is2, IR2, and IR3? d. Use inductive reasoning to generalize the equation connecting the current Is2 with the currents flowing through the resistances in circuits with more than two resistances in parallel. e. Compare the relationship between the IR2*R2 and Vs2, as well as between the IR3*R3 and Vs2. What can we conclude about this comparison? 3.3.4 Activity 4 Title: Combination circuits Lesson Focus: Discovery of formulas and principles of the combination of series and parallel circuits. Lesson Synopsis: This activity encourages students to test two different circuit designs (a series circuit versus a combination of two parallel resistances in series with a third resistance, and a combination of two serial resistances in parallel with a third resistance). Students work in teams to find out the differences and similarities between the two circuit designs, by comparing, them, in order to discover the principles and formulas of the new circuit. Prerequisites: Ohm’s law, series and parallel circuits. Worksheet 4 1. Make the following simulations of the circuits A and B. Circuit A Circuit B 2. Make predictions about the values of Is1, Is2, IR2, IR3, VR1, VR5, VR2-3, and VR4 if both of the values of the voltages Vs1 and Vs2 are10V. 3. Vary the value of the voltage of both sources Vs1 and Vs2 from 0 to 10 with a step of 2, complete the Table 4, and answer the questions below. Exploratory Questions a. For the same voltage of both sources Vs1 and Vs2, of the two circuits A and B, do you observe the same currents (Is1 and Is2, respectively)? If yes, what can we conclude about the total (or equivalent) resistance of the circuit B? Which is the formula calculating the total resistance of the circuit B? b. For the same value of the voltage of both sources Vs1 and Vs2, of the two circuits A and B, do you observe that both voltages of VR5 and VR4 have the same value, as well as that both voltages of VR1 and VR2-3 have the same value? 35
  • 10. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 c. For each value of the current Is2, which is the sum of IR2 (current flowing through the resistance R2) and IR3 (current flowing through the resistance R3)? What can we conclude about the relationship among the currents Is2, IR2, and IR3? d. Compare the relationship among the voltages of Vs1, VR1, and VR5, as well as among the voltages of Vs2, VR2-3, and VR4 for all the values of the table 4. What can we conclude about this comparison? Table 4. Results of the Activity 4 Vs1 Is1 VR1 VR5 Vs2 Is2 IR2 IR3 VR2-3 VR4 0 0 2 2 4 4 6 6 8 8 10 10 4. Make the following simulations of the circuits A and B. Circuit A Circuit B 5. Make predictions about the values of Is1, Is2, IR2, IR3, IR4, IR5-6, VR4, and VR5 if both of the values of the voltages Vs1 and Vs2 are 10V. 6. Make exploratory questions, such as above, in order to explore the simulations and decide about the formulas and principles of the circuit B by comparing it with the circuit A. 3.3.5 Activity 5 Title: Open-ended problem about electrical circuits. Lesson Focus: Students use the knowledge about electrical circuits, obtained until now, to solve an open-ended problem. Also, they should be able to restrict the number of solutions of the problem. This activity should be better to be taught by using the brainstorming technique. Lesson Synopsis: This activity encourages students to solve open-ended problems by dividing them into sub-problems. Dividing the problem into sub-problems is an effective strategy for constructing the solution. Thus, the solution process involves repeated applications of the following two steps: (i) choosing some useful sub-problems, and (ii) carrying out the solution of these sub-problems. These steps can then be recursively repeated until the original problem has been solved. The decisions needed to solve a problem arisen from choosing sub-problems (Gök, 2010). Prerequisites: Series, Parallel, and Combination of resistance circuits. Worksheet 5 Problem definition: How many ways can we connect the resistances R1=2Ohm, R2=3Ohm,and R3=6Ohm? Problem restrictions: In order to restrict the number of solutions of the problem, we should modify the problem so that it to give the lower limit of solutions. In your opinion, which of the modifications below may assist you to restrict the 36
  • 11. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 number of solutions of the problem to the lower limit? a. How many ways can we connect the resistances R1=2Ohm, R2=3Ohm, and R3=6Ohm so that each of the possible connections to give the same total resistance? b. How many ways can we connect the resistances R1=2Ohm, R2=3Ohm, and R3=6Ohm so that each of the possible connections to give different total resistance? c. How many ways can we connect the resistances R1=2Ohm, R2=3Ohm, and R3=6Ohm so that each of the possible connections to give one only value to the total resistance? Division of the problem into sub-problems: For the case (b) of the above modifications, divide the problem into four sub-problems. For example, one sub-problem should examine the solutions of series circuits. In this case, you should find out the possible solutions before and after the restrictions. Decision making and criteria judging the best solutions: For the case (b) of the above modifications of the initial problem, the criteria for judging which solutions best solve the problem are the following: Sub-problem1: For series resistances it should be possible to give one only solution among equivalent possible solutions (weight=25%). Sub-problem2: For parallel resistances it should be possible to give one only solution among equivalent possible solutions (weight=25%). Sub-problem3: For two series resistances in parallel with the third one, it should be possible to give three solutions among equivalent possible solutions (weight=25%). Sub-problem4: For two parallel resistances in series with the third one, it should be possible to give three solutions among equivalent possible solutions (weight=25%). The idea with the highest score will best solve the problem. But, you should keep a record of all of your best ideas and their scores in case your best idea turns out not to be workable. 4. Conclusion In this paper a scenario framework and its application in the curriculum of Senior High Schools or Technical High Schools is described. The presented scenario framework begins with exploratory activities on simple electrical circuits and finishes with an open-ended problem solving activity. This scenario aims at the development of exploratory and critical thinking of students, the development of make-decision skills and knowledge transfer skills from one framework to another, the ability of collaboration and in common approach of problem solving. Moreover, this scenario helps the students construct and co-construct their own deep understanding and knowledge on electrical circuits through inquiry-based simulations, explorations, guided discovery, collaboration, and by comparing a known with an unknown electrical circuit as well. In this way, the students discover principles and formulas of the unknown electrical circuits. The role of the student teams is very important for the improvement of each student achievement. This scenario framework is a difficult, too bold but not out of reach scenario. Nevertheless, it has adopted and applied by educators with a great success. The enthusiasm of the participants was apparent. 5. References Abdullah, S. and Shariff, A. (2008). The effects of inquiry-based computer simulation with cooperative learning on scientific thinking and conceptual understanding of gas laws. Eurasia Journal of Mathematics, Science and Technology Education, 4(4), 387-398. Baker, D.P., Day, R., and Salas E. (2006). Teamwork as an essential component of high-reliability organizations. Health Serv Res. 41(42), 1576-1598. Barkley, E., Cross, P., & Major, C. (2005). Cooperative Learning Techniques. San Francisco: Jossey-Bass. Buffler, A. and Allie, S. (1993). Towards an active learning environment in physics: developing problem solving skills through cooperative learning. In Proceedings of the Annual Conference of the South African Association of Academic 37
  • 12. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 Development, Bellville,15-29. Carroll M. J. (1999). Five Reasons for Scenario-based Design, Proc. of the 32nd Hawaii International Conference on System Sciences, 3. Chi, M.T.H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (ed.), Handbook of research on conceptual change (61-82). Hillsdale, NJ: Erlbaum. Concari, S., Giorgi, S., Cámara, C., and Giacosa, N. (2006). Instructional Strategies Using Simulations for Physics Teaching. Journal of Current Developments in Technology-Assisted Education, 2042-2046. Crook, C. (1994). Computers and the Cooperative Experiences of Learning. London: Routledge. DiSessa, A. (2001). Changing Minds: Computers, Learning, and Literacy. Cambridge: MIT Press. Duit, R. & von Rhöneck, C. (1998). Learning and understanding key concepts of electricity. In A. Tiberghien, E.J. Jossem & J. Barajos (eds.) Connecting research in physics education with teacher education. Gök, T. (2010). A new approach: Computer-assisted problem-solving systems. Asia-Pacific Forum on Science Learning and Teaching, 11(2). Heller, P., & Hollabaugh, M., (1992). Teaching problem solving through cooperative teaming. Part 2: Designing problems and structuring teams, American Journal of Physics, 60, 637-644. Hung, D. & Chen, D. (2002). Two kinds of scaffolding: The dialectical process within the authenticity-generalizability (A-G) continuum. Education Technology & Society, 5(4), 148-153. Johnson, D. W., Johnson, R.T. (1989). Cooperation & Competition: Theory and research. Edina, MN: International Book Company. Lee, V. S. (1999). Creating a Blueprint for the Constructivist Classroom. The National Teaching and Learning Forum, 8(4), 1-4. Lombardi, M.M, (2007). Authentic Learning for the 21st Century: An Overview. ELI's 2007 series on authentic learning. Educauce learning Initiative. Maloney, D.P. (1994). Research on Problem Solving: Physics. Handbook of Research in Science Teaching and Learning, D.L. Gabel, (Ed.). New York: Macmillan. 327-354. McDermott, L. & Shaffer, P. (1992). Research as a guide for curriculum development: An example from introductory electricity. American journal of physics, 60(11), 994-1013. Michaelsen, L. K., Fink, L. D. & Knight, A. (1997). Designing effective team activities: Lessons for classroom teaching and faculty development. In D. DeZure (ed.), To improve the academy: Resources for faculty, instructional, and organizational development, Stillwater, OK: New Forums Press, 16, 373-397. Oakley, B, Felder, R.M, Brent, R., & Elhajj, E. (2004). Turning student teams into effective teams. Journal of Student Centered Learning, 2(1), 9-34. Olson, S. and Loucks-Horsley, S. (eds). (2000). Inquiry and the National Science Education Standards: A Guide for Teaching and Learning. Copyright © National Academy of Sciences. All rights reserved. Reif, F. & Scott, L.A. (1999). Teaching scientific thinking skills: Students and computers Coaching each other. American Journal of Physics, 67, 819–831. Ronen, M. & Eliahu, M. (2000). Simulation. A bridge between theory and reality: The case of electric circuits. Journal of computer assisted learning, 16(1), 14-26. Rosenshine, B. & Meister, C. (1992). The use of scaffolds for teaching higher level cognitive strategies. Educational Leadership, 26-33. Snowman, J., McCown, R., & Biehler, R. (2008). Psychology Applied to Teaching. (12th ed.) Tao, P-K., & Gunstone, R.F. (1999). Conceptual Change in Science through Cooperative Learning at the Computer. International Journal of Science Education. 21(1), 39-57. Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Cambridge, Mass: Harvard 38
  • 13. Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol 3, No 7, 2012 University Press. Wadsworth Publishing Company. Wang, T. & Andre, T. (1991). Conceptual change text versus traditional text and application questions versus no questions in learning about electricity. Contemporary educational psychology, 16, 103-116. 39
  • 14. This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing. More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/Journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors. IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar